针对基本混合蛙跳算法收敛速度慢、求解精度不高且易陷入局部最优的缺陷,提出了一种新的正态变异优胜劣汰的混合蛙跳算法。该算法在局部搜索策略中,对子群内最差个体的更新融入了服从正态分布的变异扰动,可有效避免青蛙个体向局部最优聚集,扩大搜索空间,增加种群的多样性;同时对子群内少量的较差青蛙进行变异选择,摒弃不利的变异,继承有用的变异,优胜劣汰,整体提高种群的质量,减少算法寻优过程的盲目性,提高算法的寻优速度。对每个子群内的最优个体引入精英变异机制以获得更优秀的个体,进一步提升算法的全局寻优能力,避免陷入局部最优,引领种群向更好的方向进化。实验独立运行30次,所提算法在Sphere、Rastrigrin、G riewank、Ackley和Quadric函数中均能收敛到最优解0,优于其他对比算法。实验结果表明,所提算法可有效避免算法陷入早熟收敛,提高了算法的收敛速度和精度。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !