针对多视图相关性算法未有效利用视图中相关信息且忽视了潜在的鉴别信息的问题,提出基于同一视图内和不同视图间的双重鉴别相关性分析( DVDCA)算法。首先,设计有监督的类内和类间相关性变量,通过最大化类内相关性变量、最小化类间相关性变量来提取视图中的鉴别特征;其次,考虑在同一视图内和不同视图间均考虑进行鉴别相关特征提取,设计约束形式的双重视图鉴别相关性特征提取模型,以利用丰富的视图信息。在Multi-PIE多角度人脸数据集数据集上与多视图线性鉴别分析、典型相关性分析(CCA)、多视图鉴别隐性空间(MDLS)、不相关多视图鉴别字典学习( UMDDL)四种算法对比实验,DVDCA分类识别率能够提高1.45 -4. 73个百分点;在MFD多特征手写体数据集上分类识别率能够提高1. 25 -5. 29个百分点。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !