针对传统的克隆选择算法可能存在的早熟收敛现象和缺少交叉操作问题,提出一种高效的克隆退火优化算法,该算法结合了模拟退火算法与免疫系统的克隆选择机制,并保持全局搜索和局部搜索的平衡,可以有效提高算法的搜索效率,从而加快算法的收敛速度,同时,提出一种品质因数模型来分析该算法的动态性能,并运用Markov链理论对其收敛性进行分析.最后,将该算法应用到关联规则数据挖掘中,取得了较为理想的实验结果.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !