matlab快速傅里叶变换(三个matlab程序介绍)

matlab实验

10人已加入

描述

一种积分变换,它来源于函数的傅里叶积分表示。积分 (1) 称为ƒ 的傅里叶积分。周期函数在一定条件下可以展成傅里叶级数,而在(-∞,∞)上定义的非周期函数ƒ,显然不能用三角级数来表示。但是J.-B.-J.傅里叶建议把ƒ表示成所谓傅里叶积分的方法。

傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值谱——显示与频率对应的幅值大小)。

傅里叶变换(fft)matlab程序一

Fs = 128; % 采样频率

T = 1/Fs; % 采样时间

L = 256; % 信号长度

t = (0:L-1)*T; % 时间

x = 5 + 7*cos(2*pi*15*t - 30*pi/180) + 3*cos(2*pi*40*t - 90*pi/180); %cos为底原始信号

y = x + randn(size(t)); %添加噪声 figure; plot(t,y)

title(‘加噪声的信号’)

xlabel(‘时间(s)’)

N = 2^nextpow2(L); %采样点数,采样点数越大,分辨的频率越精确,N》=L,超出的部分信号补为0

Y = fft(y,N)/N*2; %除以N乘以2才是真实幅值,N越大,幅值精度越高

f = Fs/N*(0:1:N-1); %频率

A = abs(Y); %幅值

P = angle(Y); %相值

figure;

subplot(211);plot(f(1:N/2),A(1:N/2)); %函数fft返回值的数据结构具有对称性,因此我们只取前一半

title(‘幅值频谱’);

xlabel(‘频率(Hz)’);

ylabel(‘幅值’);

subplot(212);

plot(f(1:N/2),P(1:N/2));

title(‘相位谱频’);

xlabel(‘频率(Hz)’);

ylabel(‘相位’);

傅里叶变换(fft)matlab程序二

tp=0:2048; % 时域数据点数

N yt=sin(0.08*pi*tp).*exp(-tp/80); % 生成正弦衰减函数

plot(tp,yt), axis([0,400,-1,1]), % 绘正弦衰减曲线

t=0:800/2048:800; % 频域点数Nf

f=0:1.25:1000;

yf=fft(yt); % 快速傅立叶变换

ya=abs(yf(1:801)); % 幅值

yp=angle(yf(1:801))*180/pi; % 相位 y

r=real(yf(1:801)); % 实部

yi=imag(yf(1:801)); % 虚部

figure subplot(2,2,1)

plot(f,ya),axis([0,200,0,60]) % 绘制幅值曲线

title(‘幅值曲线’)

subplot(2,2,2)

plot(f,yp),axis([0,200,-200,10]) % 绘制相位曲线

title(‘相位曲线’)

subplot(2,2,3)

plot(f,yr),axis([0,200,-40,40]) % 绘制实部曲线

title(‘实部曲线’)

subplot(2,2,4)

plot(f,yi),axis([0,200,-60,10]) % 绘制虚部曲线

title(‘虚部曲线’)

结果

matlab

matlab

傅里叶变换(fft)matlab程序三

clear all %清除内存所有变量

close all %关闭所有打开的图形窗口

%% 执行FFT点数与原信号长度相等(100点)

% 构建原信号

N=100; % 信号长度(变量@@@@@@@)

Fs=1; % 采样频率

dt=1/Fs; % 采样间隔

t=[0:N-1]*dt; % 时间序列

xn=cos(2*pi*0.24*[0:99])+cos(2*pi*0.26*[0:99]);

xn=[xn,zeros(1,N-100)]; % 原始信号的值序列

subplot(3,2,1) % 变量@@@@@@@

plot(t,xn) % 绘出原始信号

xlabel(‘时间/s’),title(‘原始信号(向量长度为100)’) % 变量@@@@@@@

% FFT分析

NN=N; % 执行100点FFT

XN=fft(xn,NN)/NN; % 共轭复数,具有对称性

f0=1/(dt*NN); % 基频

f=[0:ceil((NN-1)/2)]*f0; % 频率序列

A=abs(XN); % 幅值序列

subplot(3,2,2),stem(f,2*A(1:ceil((NN-1)/2)+1)),xlabel(‘频率/Hz’) % 绘制频谱(变量@@@@@@@)

axis([0 0.5 0 1.2]) % 调整坐标范围

title(‘执行点数等于信号长度(单边谱100执行点)’); % 变量@@@@@@@

%% 执行FFT点数大于原信号长度

% 构建原信号

N=100; % 信号长度(变量@@@@@@@)

Fs=1; % 采样频率

dt=1/Fs; % 采样间隔

t=[0:N-1]*dt; % 时间序列

xn=cos(2*pi*0.24*[0:99])+cos(2*pi*0.26*[0:99]);

xn=[xn,zeros(1,N-100)]; % 原始信号的值序列

subplot(3,2,3) % 变量@@@@@@@

plot(t,xn) % 绘出原始信号

xlabel(‘时间/s’),title(‘原始信号(向量长度为100)’) % 变量@@@@@@@

% FFT分析

NN=120; % 执行120点FFT(变量@@@@@@@)

XN=fft(xn,NN)/NN; % 共轭复数,具有对称性

f0=1/(dt*NN); % 基频

f=[0:ceil((NN-1)/2)]*f0; % 频率序列

A=abs(XN); % 幅值序列

subplot(3,2,4),stem(f,2*A(1:ceil((NN-1)/2)+1)),xlabel(‘频率/Hz’) % 绘制频谱(变量@@@@@@@)

axis([0 0.5 0 1.2]) % 调整坐标范围

title(‘执行点数大于信号长度(单边谱120执行点)’); % 变量@@@@@@@

%% 执行FFT点数与原信号长度相等(120点)

% 构建原信号

N=120; % 信号长度(变量@@@@@@@)

Fs=1; % 采样频率

dt=1/Fs; % 采样间隔

t=[0:N-1]*dt; % 时间序列

xn=cos(2*pi*0.24*[0:99])+cos(2*pi*0.26*[0:99]);

xn=[xn,zeros(1,N-100)]; % 原始信号的值序列

subplot(3,2,5) % 变量@@@@@@@

plot(t,xn) % 绘出原始信号

xlabel(‘时间/s’),title(‘原始信号(向量长度为120)’) % 变量@@@@@@@

% FFT分析

NN=120; % 执行120点FFT(变量@@@@@@@)

XN=fft(xn,NN)/NN; % 共轭复数,具有对称性

f0=1/(dt*NN); % 基频

f=[0:ceil((NN-1)/2)]*f0; % 频率序列

A=abs(XN); % 幅值序列

subplot(3,2,6),stem(f,2*A(1:ceil((NN-1)/2)+1)),xlabel(‘频率/Hz’) % 绘制频谱(变量@@@@@@@)

axis([0 0.5 0 1.2]) % 调整坐标范围

title(‘执行点数等于信号长度(单边谱120执行点)’); % 变量@@@@@@@

结果

matlab

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分