针对尺度不变特征变换( SIFT)算法中描述子维度高造成配准过程中计算量过大的问题,提出了一种改进的SIFT算法。该算法利用圆形的旋转不变性,以特征点为中心,在近似大小的圆形特征点邻城内构造特征描述子,以每个圆环作为一个子环,每个子环内只有像素位置发生了改变,像素之间其他相对信息是保持不变的。当图像发生旋转时,统计每个圆环内元素的梯度累加值进行排序,生成特征向量描述子,降低了算法的维度及复杂度,把特征描述子的维数从128维降低到48维。实验结果表明,改进算法旋转配准重复率在85%以上;在图像旋转、缩放和光照变化情况下,与SIFT算法相比,平均配准准确率提高5%,平均配准耗时降低30%左右,有效实现了对SIFT的改进。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !