出租车全球定位系统数据中蕴含城市交通和移动对象行为的宏观信息,从中可以挖掘出有价值的异常轨迹模式。将位置和几何形状、行驶时间分别作为出租车轨迹的空间与时间特征,根据特征偏离情况划分时间、空间和时空异常轨迹。从轨迹数据中提取相同起终点的轨迹集,将轨迹划分成轨迹片段,计算轨迹间的相似度并进行基于距离和密度的聚类,在空间特征上初步分离出频繁和稀疏轨迹,根据数据异常判定的ka准则确定时间特征异常的分离阈值,对时间特征进行再次划分,最终实现出租车异常轨迹检测。实验结果表明,该方法能从异常轨迹中挖掘出个性化路线、异常停留位置和交通路段,为智能交通、物流高效规划和执行等提供参考信息。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !