电子说
图1 100 km光纤链路的时延测量结果
近期,中国科学院上海光学精密机械研究所空天激光技术与系统部杨飞研究员团队在基于激光时频同步的精密测量研究方面取得进展。相关研究成果分别以“Highly accurate absolute optical transfer delay measurement over a long distance assisted by the pulse time signal”和“High-performance motion parameter measurement based on optical phase locking and multi-signal combination”为题发表于Optics Express和Journal of Lightwave Technology。
高精度激光时频同步技术不仅在导航定位、通信网络、深空探测等领域发挥着越来越重要的作用,还带动了其他基本物理量定义、物理常数测量和物理定律检验精度的不断提高,特别是在精密测量领域展现出巨大潜力。通过实现皮秒甚至飞秒级别的时间同步,激光时频同步技术能够显著提高测量的精度和稳定性,推动精密测量技术迈向新高度。
研究团队提出了一种脉冲时间信号辅助的远距离高精度时延测量方法,首次将时频同步中常用的脉冲时间信号应用到远距离时延测量中,并配合伪码信号和正弦微波信号共同完成三级时延测量。脉冲时间信号得到的时延测量值无模糊范围大,但测量精度低;伪码得到的时延测量值无模糊范围适中,测量精度也适中;正弦微波得到的时延测量值测量精度最高,但无模糊范围也最小。因此,用较大范围、较低精度时延测量值解除较小范围、较高精度时延测量值的周期模糊,通过两级解模糊的方式,在保证亚皮秒测量精度的同时又可以实现上万公里的测量范围。实验室搭建的光纤测试系统,采用了1 PPS时间信号、250 Mbps伪码信号和1 GHz的正弦微波信号,可实现的测量精度优于±0.1 ps,采样率达到100 ms,可测量的光纤范围超过100 km。
在上述研究基础上,该研究团队又提出了一种基于光学锁相和多制式信号融合的运动目标参数测量方法,利用主动光学锁相系统中的光相位补偿量来反演出目标的运动速度,同时利用激光幅度调制的1 PPS时间信号和伪码信号得到目标的初始位置信息。在速度测量中,主动光学锁相技术将高精度测速对探测带宽的要求转移到相位跟踪带宽上,解决了测量精度与探测器带宽之间的矛盾。在实验室通过101 km光纤和7 m自由空间组成的光纤-空间混合链路与一维移动平台上搭载的角反射镜进行了实验演示,目标线速度测量在4 s的积分时间内实现了4.6 µm /s的测量误差,可以持续跟踪目标运动范围,距离测量误差为26 µm。相关研究表明高精度时频同步中的相关技术在精密测量领域,特别是远距离高精度测量场景中具有巨大的应用潜力。
图2 目标速度测量结果与测量误差
相关工作得到了得到了国家重点研发计划、国家自然科学基金、中国科学院战略优先研究计划和中国科学院青年创新促进会的支持。
审核编辑 黄宇
全部0条评论
快来发表一下你的评论吧 !