G类拓扑自适应移动放大器电源节能设计

描述

音频是便携式消费类电子设备不可或缺的一个重要组成部分。集成耳机音频功率放大器有助于放大低功耗基带音频信号,以在使用耳机时驱动清脆、清晰的音 频。另外,这些放大器都需要具有极高的效率,以实现更长时间的电池寿命。为了迎接这种挑战,广大设计人员将使用 G 类音频放大器拓扑结构。

典型的线性音频放大器拓扑结构为 A 类、B 类、C 类和 AB 类。虽然这些音频放大器均为线性;但它们的效率并不是很高。

G类耳机放大器

图 1 各种放大器拓扑的导电角

效率的定义为输出功率(向负载提供的功率)与输入功率(从电池吸取的功率)的比,用百分比表示。更高的效率意味着以热损耗形式浪费的电池功率更少。为了改善便携式音频设备的电池使用寿命,放大器需要更高的效率。

AB 类(线性)放大器具有固定的电源轨,消耗固定量的电源电流,以获得理想的输出电压。在桥接式负载 (BTL) 状态下,该电源电流等于输出电流。通过负载的电源电流致使所有输出 MOSFET 出现压降。MOSFET 压降增加的这些电流,在放大器中形成较大的功耗,这就是 AB 类放大器效率仅为 50% 的原因。

什么是 G 类拓朴?

在极高电平条件下,G 类拓扑为一种多电源的 AB 类拓扑变体。G 类拓扑充分利用了典型音频/音乐源都具有极高峰值因数 (10-20dB) 的这一有利条件。这就意味着峰值音频信号高于平均音频信号 (RMS)。大多数时候,音频信号都处在较低的幅值,极少时间会表现出更高的峰值。

新型 G 类拓扑使用自适应降压转换器,以产生随音频信号移动的电源电压。它为大多数平均音频信号产生有充足余量的低电源电压,并切换至高电源电压来适应偶发的峰值 电压。由于电源的自适应特性,高峰值因数的典型音乐/音频源的功耗得到极大降低。这样便带来更低的电池电流消耗,从而获得比 AB 类构架更高的效率。

这种电源电压为自适应型。它在高音量音频信号时升高,从而防止大峰值电压失真,同时在小音频峰值时下降来降低功耗。

G 类拓朴工作原理

图 2 描述了 G 类放大器的运行情况,其在低音频电压峰值时的电源电压为 1.3V,并在高峰值时自适应升高至 1.8V。我们使用一个降压 DC/DC 转换器来产生这些低电源轨(请参见图 3)。

G类耳机放大器

图 2 G 类拓扑自适应移动放大器电源实现节能

G类耳机放大器

图 3 G 类耳机放大器结构图

G 类放大器使用自适应电源轨,并利用一个内置降压转换器来产生耳机放大器正电源电压 (HPVDD)。充电泵对 HPVDD 进行反相,并产生放大器负电源电压 (HPVSS)。这样便让耳机放大器输出可以集中于 0V。音频信号幅值较低时,降压转换器产生一个低 HPVDD 电压 (HPVDDL)(请参见图 2)。这样便在播放低噪声、高保真音频的同时最小化了 G 类放大器的功耗。

如果由于高音量音乐或者瞬态峰值音频幅值增加,则降压转换器产生一个高 HPVDD 电压 (HPVDDH)。HPVDD 上升速率快于音频峰值上升时间。这样便可防止音频失真或削波。音频质量和噪声层不受 HPVDD 的影响。这种自适应 HPVDD 在避免削波和失真的同时最小化了电源电流。由于正常的听力水平在200mVRMS以下,因此 HPVDD 最常位于其最低电压 HPVDDL。所以,相比传统的 AB 类耳机放大器,G 类放大器拥有更高的效率。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分