传统时间序列相似度量算法在时间序列发生平移、时间轴伸缩等情况下,需要时间对齐等人工干预,并且时间复杂度较高,不利于后续数据挖掘处理。为此,基于系数矩阵弧微分提出时间序列相似度量算法。引入回归分析中的最小二乘思想,通过构建系数矩阵获取时间序列形态属性向量基,实现序列曲线的连续化。在此基础上,应用连续函数的弧微分与曲率半径的关系进行时间序列的相似度量。实验结果表明,该算法具有较强的鲁棒性,不仅能实现微观意义上序列之间的相似度量(距离相近),而且能够完成宏观意义上的相似度量(形态相近)。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !