关于5种发电方式的介绍

描述

电力工业是国民经济的重要基础工业,是国家经济发展战略中的重点和先导产业,它的发展是社会进步和人民生活水平不断提高的需要,中国作为一个电力大国,电力来源很多,有火电、水电、风电、太阳能、核电等。

火电

火力发电,利用煤、石油、天然气等固体、液体、气体燃料燃烧时产生的热能,通过发电动力装置转换成电能的一种发电方式。

能量转换

燃料化学能→蒸汽热能→机械能→电能,简单的说就是利用燃料发热,加热水,形成高温高压过热蒸汽,推动气轮机旋转,带动发电机转子(电磁场)旋转,定子线圈切割磁力线,发出电能,再利用升压变压器,升到系统电压,与系统并网,向外输送电能,然后蒸汽沿管道进入汽轮机中不断膨胀做功,冲击汽轮机转子高速旋转,汽轮机带动发电机发电,最后又被给水泵进一步升压送回锅炉中重复参加上述循环过程,发电机发出的电经变压器升压后输入电网。

原理

火力发电一般是指利用石油、煤炭和天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气推动发电机来发电的方式的总称。以煤、石油或天然气作为燃料的发电厂统称为火电厂。

流程

火力发电的流程依所用原动机而异。在汽轮机发电方式中,其基本流程是先将燃料送进锅炉,同时送入空气,锅炉注入经过化学处理的给水,利用燃料燃烧放出的热能使水变成高温、高压蒸汽,驱动汽轮机旋转作功而带动发电机发电。热电联产方式则是在利用原动机的排汽(或专门的抽汽)向工业生产或居民生活供热。在燃气轮机发电方式中,基本流程是用压气机将压缩过的空气压入燃烧室,与喷入的燃料混合雾化后进行燃烧,形成高温燃气进入燃气轮机膨胀作功,推动轮机的叶片旋转并带动发电机发电。在柴油机发电中,基本流程是用喷油泵和喷油器将燃油高压喷入汽缸,形成雾状,与空气混合燃烧,推动柴油机旋转并带动发电机发电。

效率

在火力发电方面,燃气轮机和蒸汽轮机发电厂目前已经实现了迄今最高的能源效率超过60%。由于启动时间非常短,这类电厂最适宜于补充风力发电带来的自然电力波动,而通过热电联产电厂可以达到更高的能源效率超过90% 。

火力发电

根据火力发电的生产流程,其基本组成包括燃烧系统、汽水系统(燃气轮机发电和柴油机发电无此系统,但这二者在火力发电中所占比重都不大)、电气系统、控制系统。

燃烧系统

主要由锅炉的燃烧室(即炉膛)、送风装置,送煤(或油、天然气)装置、灰渣排放装置等组成。主要功能是完成燃料的燃烧过程,将燃料所含能量以热能形式释放出来,用于加热锅炉里的水;主要流程有烟气流程、通风流程、排灰出渣流程等。

汽水系统

主要由给水泵、循环泵、给水加热器、凝汽器、除氧器、水冷壁及管道系统等组成。其功能是利用燃料的燃烧使水变成高温高压蒸汽,并使水进行循环。主要流程有汽水流程、补给水流程、冷却水流程等。对汽水系统的基本要求是汽水损失尽量少;尽可能利用抽汽加热凝结水,提高给水温度。

电气系统

主要由电厂主接线、汽轮发电机、主变压器、配电设备、开关设备、发电机引出线、厂用结线、厂用变压器和电抗器、厂用电动机、保安电源、蓄电池直流系统及通信设备、照明设备等组成。基本功能是保证按电能质量要求向负荷或电力系统供电。主要流程包括供电用流程、厂用电流程。对电气系统的基本要求是供电安全、可靠;调度灵活;具有良好的调整和操作功能,保证供电质量;能迅速切除故障,避免事故扩大。

控制系统

主要由锅炉及其辅机系统、汽轮机及其辅机系统、发电机及电工设备、附属系统组成。基本功能是对火电厂各生产环节实行自动化的调节、控制,以协调各部分的工况,使整个火电厂安全、合理、经济运行,降低劳动强度,提高生产率,遇有故障时能迅速、正确处理,以避免酿成事故。主要工作流程包括汽轮机的自起停、自动升速控制流程、锅炉的燃烧控制流程、灭火保护系统控制流程、热工测控流程、自动切除电气故障流程、排灰除渣自动化流程等。

其中,在火电厂中的各类辅机设备中,风机水泵类设备占了绝大部分,蕴藏着巨大的节能潜力。由于火电机组调峰力度的加大,这些机组的负荷变化范围很大,必须实时调节风机水泵的流量。因此,风机水泵类负载采用变频调速驱动是非常有必要的。

水电

水力发电(Hydroelectric power)系利用河流、湖泊等位于高处具有势能的水流至低处,将其中所含势能转换成水轮机之动能,再借水轮机为原动力,推动发电机产生电能。利用水力(具有水头)推动水力机械(水轮机)转动,将水能转变为机械能,如果在水轮机上接上另一种机械(发电机)随着水轮机转动便可发出电来,这时机械能又转变为电能。水力发电在某种意义上讲是水的位能转变成机械能,再转变成电能的过程。

原理

水力发电的基本原理是利用水位落差,配合水轮发电机产生电力,也就是利用水的位能转为水轮的机械能,再以机械能推动发电机,而得到电力。根据水位落差的天然条件,有效的利用流力工程及机械物理等,精心搭配以达到最高的发电量,供人们使用廉价又无污染的电力。

流程

惯常水力发电的流程为:河川的水经由拦水设施攫取后,经过压力隧道、压力钢管等水路设施送至电厂,当机组须运转发电时,打开主阀(类似家中水龙头之功能),后开启导翼(实际控制输出力量的小水门)使水冲击水轮机,水轮机转动后带动发电机旋转,发电机加入励磁后,发电机建立电压,并于断路器投入后开始将电力送至电力系统。如果要调整发电机组的出力,可以调整导翼的开度增减水量来达成,发电后的水经由尾水路回到河道,供给下游的用水使用。

系统

水电站是将水能转变为电能的水力装置,它由各种水工建筑物,以及发电、变电、配电等机械、电气设备,组成为一个有机的综合体,互相配合,协同工作,这种水力装置,就是水电站枢纽或者水力枢纽,简称水电站。它由挡水建筑物、泄水建筑物、进水建筑物、引水建筑物、平水建筑物及水电站厂房等水工建筑物共7个部分组成,机电设备则安装在各种建筑物上,主要是在厂房内及其附近。

(1)挡水建筑物:是拦截水流、雍高水位、形成水库,以集中落差、调节流量的建筑物,例如坝和闸;

(2)泄水建筑物:其作用主要是泄放水库容纳不了的来水,防止洪水漫过坝顶,确保水库安全运用,因而是水库中必不可少的建筑物,例如溢流坝、河岸溢洪道、坝下泄水管及隧洞、引水明渠溢水道等;

(3)进水建筑物:使水轮机从河流或水库取得所需的流量,如进水口;

(4)引水建筑物:引水建筑物是引水式或混合式水电站中,用来集中落差(对混合式水电站而言,则只是集中总会落差)和输送流量的工程设施,如明渠、隧洞等。有时水轮机管道也被称为引水建筑物,但严格说来,由于它主要是输送流量的,所以与同时具有集中落差和输送流量双重作用的引水建筑物并不完全相同,有些水电站具有较长的尾水隧洞及尾水渠道,这也属于引水建筑物;

(5)平水建筑物:其作用是当负荷突然变化引起引水系统中流量和压力剧烈波动时,借以调整供水流量及压力,保证引水建筑物、水轮机管道的安全和水轮发电机组的稳定运行。如引水式或混合式水电站的引水系统中设置的平水建筑物如压力池或高压池;

(6)厂区建筑物:包括厂房、变电站和开关站。厂房是水电站枢纽中最重要的建筑物之一,它不同于一般的工业厂房,而是是水力机械、电气设备等有机地结合在一起的特殊的水工建筑物;变电站是安装升压变压器的场所;而开关站则是安装各种高压配电装置的地方,故也称高压配电场;

(7)枢纽中的其它建筑物:此类建筑物指对于将水能转变为电能这个生产过程没有直接作用的船闸或升船机、筏道、鱼道或鱼闸以及为灌溉或城市供水而设的取水设施等。为了综合利用水资源,它们在整个水电站枢纽中也是不可分割的一部分,对枢纽的布置和运用也有重要的影响。

其中,在水电站的主厂房桥机、坝顶门机和尾水门机重要的起重设备,以及整个系统的大部分风机水泵负载都有应用变频技术,变频器在整个系统中的应用是很广泛的。

风电

风力发电是把风的动能转为电能。风能作为一种清洁的可再生能源,越来越受到世界各国的重视,其蕴量巨大,全球的风能约为2.74×10^9MW,其中可利用的风能为2×10^7MW,比地球上可开发利用的水能总量还要大10倍。

资源

我国风能资源丰富,可开发利用的风能储量约10亿kW,其中,陆地上风能储量约2.53亿kW(陆地上离地10m高度资料计算),海上可开发和利用的风能储量约7.5亿kW,共计10亿kW。而2003年底全国电力装机约5.67亿kW。

风是没有公害的能源之一,而且它取之不尽,用之不竭。对于缺水、缺燃料和交通不便的沿海岛屿、草原牧区、山区和高原地带,因地制宜地利用风力发电,非常适合,大有可为。

水电

原理

把风的动能转变成机械动能,再把机械能转化为电能,这就是风力发电。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。

系统

风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。(大型风力发电站基本上没有尾舵,一般只有小型(包括家用型)才会拥有尾舵)

风轮

风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。

由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。

铁塔

铁塔是支承风轮、尾舵和发电机的构架。

发电机

发电机的作用,是把由风轮得到的恒定转速,通过升速传递给发电机构均匀运转,因而把机械能转变为电能。风力发电在中国西部地区大力提倡,特别是在小型风力系统方面,其发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

在风电的领域,经常遇到的一个的难题是:薄弱的电网短路容量、电网电压的波动和风力发电机的频繁掉线。随着变频技术的发展,通过整个系统内部的通讯单元把要控制的要求传递给风电场的每一台风力发电机中的控制单元,调节和控制变频装置的频率、相位角和幅值使之达到调节电网的功率因数,为弱电网提供无功能量的要求。因此,变频技术在风电系统中也是占有很重要的地位。

太阳能

太阳能(solar energy),是指太阳的热辐射能,主要表现就是常说的太阳光线。在现代一般用作发电或者为热水器提供能源。自地球上生命诞生以来,就主要以太阳提供的热辐射能生存,而自古人类也懂得以阳光晒干物件,并作为制作食物的方法,如制盐和晒咸鱼等。在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,并不断得到发展。太阳能的利用有光热转换和光电转换两种方式,太阳能发电是一种新兴的可再生能源。

水电

发电原理

光生伏特效应:假设光线照射在太阳能电池上并且光在界面层被接纳,具有足够能量的光子可以在P型硅和N型硅中将电子从共价键中激起,致使发作电子-空穴对。界面层临近的电子和空穴在复合之前,将经由空间电荷的电场结果被相互分别。电子向带正电的N区和空穴向带负电的P区运动。经由界面层的电荷分别,将在P区和N区之间发作一个向外的可测试的电压。此时可在硅片的两边加上电极并接入电压表。对晶体硅太阳能电池来说,开路电压的典型数值为0.5~0.6V。经由光照在界面层发作的电子-空穴对越多,电流越大。界面层接纳的光能越多,界面层即电池面积越大,在太阳能电池中组成的电流也越大。

太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通威廉希尔官方网站 后就形成电流。这就是光电效应太阳能电池的工作原理。

系统

太阳能光伏发电系统是利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统。其主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。

太阳能电池组件

太阳能电池组件的作用是将太阳辐射能直接转换成直流电,供负载使用或存贮于蓄电池内备用。一般根据用户需要,将若干太阳电池板按一定方式连接,组成太阳能电池方阵,再配上适当的支架及接线盒组成。

控制器

控制器主要由电子元器件、仪表、继电器、开关等组成。在太阳发电系统中,控制器的基本作用是为蓄电池提供最佳的充电电流和电压,快速、平稳、高效的为蓄电池充电,并在充电过程中减少损耗、尽量延长蓄电池的使用寿命;同时保护蓄电池,避免过充电和过放电现象的发生。如果用户使用直流负载,通过充电控制器还能为负载提供稳定的直流电。

逆变器

逆变器的作用就是将太阳能电池方阵和蓄电池提供的低压直流电逆变成220伏交流电,供给交流负载使用。

蓄电池组

蓄电池组是将太阳电池方阵发出直流电贮存起来供负载使用。在光伏发电系统中,电池处于浮充放电状态,夏天日照量大,除了供给负载用电外,还对蓄电池充电。在冬天日照量少时,这部分贮存的电能逐步放出。白天太阳能电池方阵给蓄电池充电,同时方阵还要给负载用电,晚上负载用电全部由蓄电池供给。因此,要求蓄电池的自放电要小,而且充电效率要高,同时还要考虑价格和使用是否方便等因素。

核电

核电是指将核能转换为热能,用以产生供汽轮机用的蒸汽,汽轮机再带动发电机,从而发电。

核电站与火电站发电过程相同,均是热能—机械能—电能的能量转换过程,不同之处主要是热源部分。火电站是通过化石燃料在锅炉设备中燃烧产生热量,而核电站则是通过核燃料链式裂变反应产生热量。

水电

系统

核电站的组成通常有两部分:核系统及核设备,又称为核岛;常规系统及常规设备,又称为常规岛。这两部分就组成了核能发电系统。

核岛中主要的设备为核反应堆及由载热剂(冷却剂)提供热量的蒸汽发生器,它替代常规火电站中蒸汽锅炉的作用。常规岛的主要设备为气轮机和发电机及其相应附属设备,常规岛的组成与常规火电站气轮机大致相同。

核电站除了关键设备——核反应堆外,还有许多与之配合的重要设备。以压水堆核电站为例,它们是主泵,稳压器,蒸汽发生器,安全壳,汽轮发电机和危急冷却系统等。它们在核电站中有各自的特殊功能。

主泵

如果把反应堆中的冷却剂比做人体血液的话,那主泵则是心脏。它的功用是把冷却剂送进堆内,然后流过蒸汽发生器,以保证裂变反应产生的热量及时传递出来。

稳压器

又称压力平衡器,是用来控制反应堆系统压力变化的设备。在正常运行时,起保持压力的作用;在发生事故时,提供超压保护。稳压器里设有加热器和喷淋系统,当反应堆里压力过高时,喷洒冷水降压;当堆内压力太低时,加热器自动通电加热使水蒸发以增加压力。

蒸汽发生器

它的作用是把通过反应堆的冷却剂的热量传给二次回路水,并使之变成蒸汽,再通入汽轮发电机的汽缸作功。

安全壳

用来控制和限制放射性物质从反应堆扩散出去,以保护公众免遭放射性物质的伤害。万一发生罕见的反应堆一回路水外逸的失水事故时,安全壳是防止裂变产物释放到周围的最后一道屏障。安全壳一般是内衬钢板的预应力混凝土厚壁容器。

汽轮机

核电站用的汽轮发电机在构造上与常规火电站用的大同小异,所不同的是由于蒸汽压力和温度都较低,所以同等功率机组的汽轮机体积比常规火电站的大。

冷却系统

为了应付核电站一回路主管道破裂的极端失水事故的发生,近代核电站都设有危急冷却系统。它是由注射系统和安全壳喷淋系统组成。一旦接到极端失水事故的信号后,安全注射系统向反应堆内注射高压含硼水,喷淋系统向安全壳喷水和化学药剂。便可缓解事故后果,限制事故蔓延。

核电布局

根据国家能源局提出的能源规划思路,其中核电发展要推动内陆核电项目,形成东中部核电带。

在核电规划布局上,一是采用成熟、先进的核电技术,在辽宁、山东、江苏、浙江福建等沿海省区加快发展核电;二是稳步推进江西、湖南、湖北、安徽等中部省份内陆核电项目,形成“东中部核电带”。根据电网负荷分布情况,适当建设一些抽水蓄能电站。

核电的发展有力地带动了核电设备产业的迅速发展。目前我国核电站总体国产化率约为50%-60%,规划到2020年国产化率大于80%。按照装机容量超过7000万千瓦来计算,未来10年,我国核电总投资规模将高达1万亿元,核电设备在核电站投资中占比约60%,设备投资约6000亿元。如果按核岛、常规岛、辅助设备国产化率分别为70%、80%、90%计算,那么国内核电设备制造商将分享3200多亿元的市场,市场潜力巨大。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分