常见阻抗匹配的方式有哪些_优缺点详解

电子说

1.3w人已加入

描述

  信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。

  本文主要跟大家介绍常见阻抗匹配的方式有哪些以及他们的优缺点,具体的跟随小编一起来了解一下。

  

  匹配条件

  ①负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。

  ②负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。这时在负载阻抗上可以得到最大功率。这种匹配条件称为共轭匹配。如果信源内阻抗和负载阻抗均为纯阻性,则两种匹配条件是等同的。

  阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的威廉希尔官方网站 ,匹配条件是不一样的。在纯电阻威廉希尔官方网站 中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

  当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份绝对值相等而符号相反。这种匹配条件称为共扼匹配。

  阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。史密夫图表上。电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。

  共轭匹配

  在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比K,当两者相等,即K=1时,输出功率最大。然而阻抗匹配的概念可以推广到交流威廉希尔官方网站 ,当负载阻抗与信号源阻抗共轭时,能够实现功率的最大传输,如果负载阻抗不满足共轭匹配的条件,就要在负载和信号源之间加一个阻抗变换网络,将负载阻抗变换为信号源阻抗的共轭,实现阻抗匹配。

  匹配分类

  大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。

  要匹配一组线路,首先把负载点的阻抗值除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。

  1、改变阻抗力

  把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重复以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。

  2、调整传输线

  由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配。

  阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输威廉希尔官方网站 中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了。反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为 100欧姆,只是取个整而已,为了匹配方便。

  

  常见阻抗匹配的方式有哪些

  当传输路径上阻抗不连续时,会有反射发生,阻抗匹配的作用就是通过端接元器件,时传输路线上的阻抗连续以去除传输链路上产生的反射。常见的阻抗匹配如下:

  一、串联端接方式

  靠近输出端的位置串联一个电阻,要达到匹配效果,串联电阻和驱动端输出阻抗的总和应等于传输线的特征阻抗Z0。

  阻抗

  在通常的数字信号系统中,器件的输出阻抗通常是十几欧姆到二十几欧姆,传输线的阻抗通常会控制在50欧姆,所以始端匹配电阻常见为33欧姆电阻。

  当然要达到好的匹配效果,驱动端输出到串联电阻这一段的传输路径最好较短,短到可以忽略这一段传输线的影响。

  串联电阻优缺点如下:

  (1)优点

  1、只需要一个电阻;

  2、没有多余的直流功耗;

  3、消除驱动端的二次反射;

  4、不受接收端负载变化的影响;

  (2)缺点

  1、接收端的一次发射依然存在;

  2、信号边沿会有一些变化;

  3、电阻要靠近驱动端放置,不适合双向 传输信号;

  4、在线上传输的电压是驱动电压的一半,不适合菊花链的多型负载结构。

  1234567891011121314

  二、并联端接方式

  并联端接又叫终端匹配,要达到阻抗匹配的要求,端接的电阻应该和传输线的特征阻抗Z0相等。

  阻抗

  在通常的数字信号传输系统里,接收端的阻抗范围为几兆到十几兆,终端匹配电阻如果和传输线的特征阻抗相等,其和接收端阻抗并联后的阻抗大致还是在传输线的特征阻抗左右,那么终端的反射系数为0。不会产生反射,消除的是终端的一次反射。

  并联端接优缺点

  (1)优点

  1、适用于多个负载

  2、只需要一个电阻并且阻值容易选取

  (2)缺点

  1、增加了直流功耗

  2、并联端接可以上拉到电源或者下拉到地,是的低电平升高或者高电平降低,减小噪声容限。

  123456789

  三、AC并联端接

  并联端接为消除直流功耗,可以采用如下所示的AC并联端接(AC终端匹配)。要达到匹配要求,端接的电阻应该和传输线的特征阻抗Z0相等。

  阻抗

  优缺点描述如下:

  (1)优点

  1、适用于多个负载

  2、无直流功耗增加

  (2)缺点

  1、需要两个器件

  2、增加了终端的容性负载,增加了RC威廉希尔官方网站 造成的延时

  3、对周期性的信号有效(如时钟),不适合于非周期信号(如数据)

  四、戴维南端接

  戴维南端接同终端匹配,如下图,要达到匹配要求,终端的电阻并联值要和传输线的特征阻抗Z0相等。

  阻抗

  优缺点描述:

  (1)优点

  1、适用于多个负载

  2、很适用于SSTL/HSTL电平上拉或下拉输出阻抗很好平衡的情况。

  (2)缺点

  1、直流功耗增加

  2、需要两个器件

  3、端接电阻上拉到电源或下拉到地,会使得低电平升高或高电平降低

  4、电阻值较难选择,电阻值取值小会使低电平升高,高电平降低更加恶劣;电阻值取大有可能造成不能完全匹配,使反射增大,可以通过仿真来确定。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分