关于傅里叶变换变换?

电子说

1.3w人已加入

描述

关于傅里叶变换变换?

        答:fourier变换是将连续的时间域信号转变到频率域;它可以说是laplace变换的特例,laplace变换是fourier变换的推广,存在条件比fourier变换要宽,是将连续的时间域信号变换到复频率域(整个复平面,而fourier变换此时可看成仅在jΩ轴);z变换则是连续信号经过理想采样之后的离散信号的laplace变换,再令z=e^sT时的变换结果(T为采样周期),所对应的域为数字复频率域,此时数字频率ω=ΩT。——参考郑君里的《信号与系统》。

信号

2、什么是Laplace变换?答:

信号

(1)求解方程得到简化。且初始条件自动包含在变换式里。

(2)拉氏变换将“微分”变换成“乘法”,“积分”变换成“除法”。即将微分方程变成代数方程。拉氏变换将时域中卷积运算变换成“乘法”运算。

(3)利用系统函数零点、极点分布分析系统的规律。

在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。

现在给你举个例子:我们学控制的时候,比如一个二阶威廉希尔官方网站 RLC系统微分方程是:LC*Uc''+RC*Uc'+Uc=U设想你借这个微分方程多费劲,那么你用laplace变换,微分方程变为LC*s^2*Uc+RCs*Uc+Uc=U然后Uc=U/(LCs^2+RCs+1)然后可以查表直接得出结果(就跟查积分表一样方便),这不比你解微分方程,强多了么!

(第2种说法)拉普拉斯变换提供了一种变换定义域的方法,把定义在时域上的信号(函数)映射到复频域上(要理解这句话,需要了解一下函数空间的概念--我们知道,函数定义了一种“从一个集合的元素到另一个集合的元素”的关系,而两个或以上的函数组合成的集合,就是函数空间,即函数空间也是一个集合;拉普拉斯变换的“定义域”,就是函数空间,可以说,拉普拉斯变换就是一种处理函数的函数。由于拉普拉斯变换定义得相当巧妙,所以它就具有一些奇特的特质),而且,这是一种一一对应的关系(只要给定复频域的收敛域),故只要给定一个时域函数(信号),它就能通过拉普拉斯变换变换到一个复频域信号(不管这个信号是实信号还是复信号),因而,只要我们对这个复频域信号进行处理,也就相当于对时域信号进行处理(例如设f(t)←→F(s),Re[s]>a,则若我们对F(s)进行时延处理,得到信号F(s-z),Re[s]>a+Re[z],那么就相当于我们给时域函数乘以一个旋转因子e^zt,即f(t)e^zt←→F(s-z),Re[s]>a+Re[z];只要对F(s-z)进行反变换,就可以得到f(t)e^zt)。

拉普拉斯变换被用于求解微分方程,主要是应用拉普拉斯变换的几个性质,使求解微分方程转变为求解代数方程(因为求解代数方程总比求解微分方程容易得多!而且,(可以很方便地)对求解结果进行拉普拉斯反变换从而得到原微分方程的解)。

我们总可以容易地画出实变函数的图像(绝大多数函数的确如此),但我们难以画出一个复变函数的图象,这也许是拉普拉斯变换比较抽象的原因之一;而另外一个原因,就是拉普拉斯变换中的复频率s没有明确的物理意义。关于特征根和复数,建议提问者再去看看书中的定义,应该不难理解。3、什么是z变换?

信号

4、什么是FFT(快速fourier变换)?答:音频处理里面常用。就是把波形(时域信号)变换到频域,使得用户更好的分析。频域就是类似于“千千静听”的频谱。这个过程叫“离散傅立叶变换”(DFT)。而FFT是DFT的一种高效快速算法。快速傅立叶变换算法的原理是(来自百度百科):快速傅氏变换(FFT)是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。设x(n)为N项的复数序列,由DFT变换,任一X(m)的计算都需要N次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,

信号

信号

信号

一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N项复数序列的X(m),即N点DFT变换大约就需要N2次运算。当N=1024点甚至更多的时候,需要N2=1048576次运算,在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2(N/2)2=N+N2/2。继续上面的例子,N=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的DFT运算单元,那么N点的DFT变换就只需要Nlog2N次的运算,N在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT的优越性。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分