第二代身份证射频卡芯片的噪声检测和可行的噪声标定方法

描述

第二代身份证射频卡芯片在工作场强内不可避免地会产生噪声,可能会影响卡片与读卡器系统的正常工作。本文从理论上详细分析了卡片调制信号幅值与读卡器灵敏度的关系,提出了一种卡片噪声的检测和标定方法。这有利于合理地匹配不同厂家的卡片与读卡机具,改善兼容性,对二代证的大量应用具有重要意义。

我国第二代居民身份证(简称“二代证”)采用了符合ISO14443 Type B 通讯协议的近耦合射频识别(RFID)技术,载波频率为13.56MHz,工作场强为1.5“7.5A/m,卡片调制副载波频率为847kHz。射频卡(非接触IC 卡)在实际中已经得到了广泛的应用。在检测国内各厂家研制的二代证样卡时,技术人员发现不同厂家的芯片噪声水平相差很大,有的甚至影响了卡片与读卡器的正常通信。也就是说,当卡片处于读卡器天线的工作场强范围内,尤其是在近场情况下,读卡器与卡尚未进行通讯时,卡片天线两端的电压(电流)交流信号峰峰值会发生波动,波动频率可能为847kHz,或是其整数倍频(或分频)。造成波动的主要原因是芯片电源稳定性差,或者芯片功耗波动太大。如果卡片线圈内的电流信号峰峰值波动达到一定值,尤其是847kHz 频率的波动时,读卡器就可能将其放大到与有效信号相当的幅值水平,这样就会严重影响读卡器的工作,大大增加读卡器解调威廉希尔官方网站 的设计难度。

本文首先简单介绍了Type B 射频卡系统的通信原理,之后分析了卡片调制信号以及与噪声和读卡器灵敏度之间的关系,提出了噪声检测方法和可行的噪声标定方法,并对此进行了详细讨论。

读卡器

图1 近耦合射频卡系统等效威廉希尔官方网站 图

读卡器

图2 调制深度曲线

近耦合射频卡通信原理

卡片与读卡器之间是通过近电感耦合来进行通讯的。也就是说,当读卡器向卡片发送指令时,读卡器天线线圈流过的电流会根据指令发生相应的变化,场中的卡片就会感应到此变化,并解调出指令信号,之后对指令信号进行处理并发出响应;当卡片向读卡器发送响应信号时,卡片会根据响应信号通过负载调制的方式改变卡片线圈流过的电流,读卡器天线线圈就会感应到卡线圈电流的变化,并进行解调处理,得到卡片响应信号。

读卡器一般将两个边带信号中的一个847kHz 频率成分通过滤波器从载波信号中分离出来,但是实际上并不存在理想的滤波器。这样,叠加在载波上的847kHz 附近频带上的信号(包括调制信号和噪声信号)都会通过读卡器的滤波器,从而被放大。其中,847kHz 附近频带上的噪声信号主要是由于芯片内部逻辑威廉希尔官方网站 工作时功耗的周期性波动而引起的。特别的,对于CPU 卡片来说,由于指令的周期性操作,可能引起电源周期性波动,更严重的会对EEPROM 进行操作。因此,在芯片设计阶段,就应该认真对待电源的稳定与功耗问题。

卡片调制信号分析与检测

理论分析

近耦合射频卡与读卡器通信的简单等效威廉希尔官方网站 原理图如图1 所示。其中,R1、C1、L1 和R2、C2、L2 分别为读卡器和卡片天线谐振威廉希尔官方网站 中的等效电阻、电容和电感;Z2 为芯片等效阻抗负载;M 为互感;u 和i 分别为电压和电流(指的是电压和电流交流信号幅值)。当L1 和C1 满足谐振时,有:

读卡器

读卡器通过对u1(天线两端电压)进行检波、滤波、放大和解调处理得到卡片发出的数据。在读卡器接收信号期间,u0 保持不变。在L1 和C1 满足谐振条件的情况下,下文将对卡片的调制深度与读卡器接收端u1 的关系进行分析。

如果卡片与读卡器天线位置固定,则耦合系数确定,即互感M 不变。根据式(1)可知,只有卡片线圈电流i2 影响u1 的值。因此,当卡片向读卡器返回响应信息时,可以通过负载(电阻或者电容)调制改变Z2,从而改变i2 的值;

当改变卡片与读卡器天线线圈间的距离时,也即改变了通过卡片线圈的有效磁场强度Heff。由M*i1=(u0*A*N)*Heff,可知Heff 的改变意味着M 的改变,但它们之间并不是线性关系,因为当读卡器线圈与卡片线圈位置发生变化时,i1 也会发生变化。由式(1)有

读卡器

 

读卡器

由上式可以看出,如果苅2 与H0 为线性关系,即苅2=m/H0,那么苪1 基本接近一个常数b1?m/i10。但是由于苅2 与苅1(或艸)会向相反的方向变化,因此,在不同的场强下,如果想得到相同的苪1,就需要对苅2=m/H0 进行修正。由ISO14443-2 给出的卡片负载调制深度幅值为30/H1.2mV(峰值),可以近似地推导出苅2=m/H1.2。

调制深度曲线

ISO/IEC 14443-2:2001(E)中规定,如果采用ISO10373-6 标准描述的方法,在不同的磁场强度H 下,卡片负载调制深度幅值(副载波频率为847kHz)不应该低于30/H1.2mV(峰值),其中H 是磁场强度(A/m rms)。

根据标准要求,绘制如图2 所示的调制深度曲线。曲线1 为标准要求的卡片理想调制深度曲线30/H1.2;曲线4 为预计的实际卡片调制深度曲线;曲线2 为预计的实际读卡机具灵敏度曲线;曲线3 为预计的卡片芯片噪声曲线(只针对847kHz 频率点)。为保证卡片与读卡机具间的兼容性,上述4 条曲线应该存在如下关系:标准曲线1 可通过10373 测试平台进行标定,其它曲线都必须以其为参考;实际卡片调制深度曲线4 应该在曲线1 之上(可以是曲线1);读卡机具灵敏度曲线2 应该在曲线1 之下(可以是曲线1);卡片噪声曲线3 不应该高于曲线2 的一半,这样,才可能不会影响读卡机具的正常工作,因此曲线3 要与曲线2 相互配合,才能增强读卡器的抗噪声能力。

以上曲线描述的是13.56MHz847kHz 的两个边带上的信号幅值,都是理想的曲线。曲线1 描述的是卡片应该发出的有用信号调制深度的最小值,根据前面的理论分析可知,这条曲线映射到读卡器接收端大致上为一个点。也就是说,如果卡片的负载调制深度满足曲线1,那么无论卡片在1.5”7.5A/m 范围内哪一个距离工作,读卡器接收到的信号都应该是基本相同的。对于卡片的噪声,不仅仅是847kHz 频率点影响读卡器接收,实际上847kHz 附近其它频率点上的噪声也会影响读卡器的接收,并在读卡器接收端的时域信号上表现出来。因此,仅仅定义曲线3 是不够的。在频域上,应该定义一个847kHz 附近的带宽,在时域上应该通过一个标准的读卡器来标定卡片噪声大小。

另外,卡片静态(在场中处于非通讯状态)噪声可能较小,但在卡片工作(特别是对EEPROM 进行读写操作)状态下的动态噪声可能很大,以至影响正常通讯。因此,在标定卡片噪声时,不仅需要标定847KHz 边带上的噪声幅值,也应该标定卡片可能出现的最大时域噪声。

卡片噪声检测方法

根据实际在屏蔽室中的测量结果,由于噪声信号幅值很小(示波器测量值1mV 左右),而且示波器的测量精度有限,导致测量结果的可靠性降低,因此,利用10373 测试平台无法检测出卡片噪声,需要通过间接手段进行测量。测量读卡器模拟部分放大输出(中间经过空间磁场耦合、检波、滤波、模拟放大过程),就可以对卡片噪声(尤其是847kHz 频率点附近带宽上的频率成分)进 行间接测量。

本文提出的检测步骤如下:构造一台标准的读卡器,利用示波器测量并记录读卡器上模拟放大器输出端的本体噪声;将卡片放在读卡器线圈中心上方的不同位置,在模拟放大器输出端间接检测卡片静态噪声;在卡片与读卡器通讯状态下,在模拟放大器输出端间接检测卡片动态噪声,通讯指令为ALOHA、ATTRIB、READ SN、GET RANDOM 等;通过上述操作间接检测并记录卡片的最大相对时域噪声。

卡片噪声标定方法

利用上述方法可以间接地检测出卡片的静态和动态噪声,但是不能与曲线1 相比较。为了描绘出卡片噪声曲线3,应该确定一个噪声标定方法。本文介绍如下方法进行间接等效标定。

1) 利用一个参考PICC 或者正常卡片,按照ISO10373-6 中描述的方法对读卡器进行标定,利用10373 测试平台测量出参考PICC 在某一个场强H1 下的调制深度值,并调节PICC 上调制负载,使得负载调制深度在曲线1 上;

2) 将参考PICC 放入读卡器线圈上方带载等效场强为H1 的平面处,读卡器发送ALOHA 信号,观察读卡器模拟输出端的信号,测量并记录卡片在响应期间内的有用信号,调节读卡器增益使得观察到的信号为合理值Vamp0(与读卡器中模拟放大器供电电源有关);

3) 利用上节描述的方法对卡片在不同状态下的噪声进行测量,并记录测量值(电压峰峰值和847kHz 附近的频谱);

4) 将在读卡器场强为H(d)(d 表示卡片与读卡器线圈间的距离)时测量得到的最大噪声值Vn(d)(电压峰峰值)与Vamp0 比较,得到最大噪声与理想信号的比值x(d);

5) 利用曲线1 可以计算出读卡器上H(d)处的等效噪声值(847kHz 频率点),从而可以观察等效噪声是否在曲线3 下面:

以上所描述的方法在实际上是可行的,可是在频域和时域上存在一个矛盾,因此需要解释如下:

1) 图2 中的曲线是在频率点847kHz(13.56MHz847kHz)上的曲线;

2) 实际上,847kHz 附近频谱上的噪声也会影响读卡器接收;

3) 根据上节描述的方法测量到的读卡器放大输出时域信号,并不是一个频率点,而是所有频谱上的噪声在时域上的叠加;

4) 图2 中曲线3 描述的是工作场强范围内载波频率两边847kHz 频率点上的噪声,利用上述标定方法可将读卡器接收端的时域信号等效到曲线3 上,也就意味着将卡片发出的847kHz 附近频谱上的噪声在读卡器接收端都测量出来,然后又等效到了847kHz 频率点上;

5) 这里描述的标定方法在某种程度上依赖于一个合理的读卡器。值得指出的是,如果卡片噪声曲线在读卡器灵敏度曲线的一半之上,并不意味着卡片不能工作,但是可能意味着卡片工作不稳定。因为读卡器的噪声处理能力也会影响系统通讯过程。

结语

本文从理论及实验角度分析了卡片调制深度曲线、卡片噪声曲线与读卡器灵敏度曲线之间的关系,提出了一种间接测量卡片噪声的方法,以及一种可行的标定卡片噪声的方案,并根据实际情况进行了讨论,这对大生产中射频卡与读卡机具的合理匹配提供了很好的理论基础。此外,本文提出的方法在理论上仍然缺少严密性,但具有相当大的实际价值,需要进一步补充和完善。


打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分