提高功率密度已经成为电源变换器的发展趋势。为达到这个目标,需要提高开关频率,从而降低功率损耗、系统整体尺寸以及重量。对于当今的开关电源(SMPS)而言,具有高可靠性也是非常重要的。零电压开关(ZVS) 或零电流开关(ZCS) 拓扑允许采用高频开关技术,可以最大限度地降低开关损耗。ZVS拓扑允许工作在高频开关下,能够改善效率,能够降低应用的尺寸,还能够降低功率开关的应力,因此可以改善系统的可靠性。LLC 谐振半桥变换器因其自身具有的多种优势逐渐成为一种主流拓扑。这种拓扑得到了广泛的应用,包括高端服务器、平板显示器电源的应用。但是,包含有LLC谐振半桥的ZVS桥式拓扑,需要一个带有反向快速恢复体二极管的MOSFET,才能获得更高的可靠性。本应用笔记讨论了LLC谐振变换器中潜在失效模式和机理,并为防止失效,提供一种简单、高性价比的解决方案。
在功率变换市场中,尤其对于通信/服务器电源应用,不断提高功率密度和追求更高效率已经成为最具挑战性的议题。对于功率密度的提高,最普遍方法就是提高开关频率,以便降低无源器件的尺寸。零电压开关(ZVS)拓扑因具有极低的开关损耗、较低的器件应力而允许采用高开关频率以及较小的外形,从而越来越受到青睐 。这些谐振变换器以正弦方式对能量进行处理,开关器件可实现软开闭,因此可以大大地降低开关损耗和噪声。在这些拓扑中,相移ZVS全桥拓扑在中、高功率应用中得到了广泛采用,因为借助功率MOSFET的等效输出电容和变压器的漏感可以使所有的开关工作在ZVS 状态下,无需额外附加辅助开关。然而,ZVS范围非常窄,续流电流消耗很高的循环能量。近来,出现了关于相移全桥拓扑中功率MOSFET失效问题的讨论。这种失效的主要原因是:在低反向电压下,MSOFET体二极管的反向恢复较慢。另一失效原因是:空载或轻载情况下,出现Cdv/dt直通。在LLC谐振变换器中的一个潜在失效模式与由于体二极管反向恢复特性较差引起的直通电流相关。即使功率MOSFET的电压和电流处于安全工作区域,反向恢复dv/dt和击穿dv/dt也会在如启动、过载和输出短路的情况下发生。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !