一份CS230课程知识点的归纳总结,在Reddit上引发热议

电子说

1.3w人已加入

描述

吴恩达斯坦福大学CS230《深度学习》课程内容归纳总结放出,全文干货。对于不方便正式上课的同学们来说,相信这份核心内容总结一定会对你有所帮助。

作为全球计算机四大名校之一,斯坦福大学的CS230《深度学习》课程一直受到全球计算机学子和从业人员的热烈欢迎。

CS230授课人为全球著名计算机科学家吴恩达和他的助教Kian Katanforoosh。

日前,MIT的Afshine Amidi 和斯坦福大学的Shervine Amidi在博客上整理了一份CS230课程知识点的归纳总结,在Reddit上引发热议。

评论网友纷纷表示喜大普奔,对于没有条件上课或者没赶上授课时间的人来说,看看这份总结贴也能获益颇丰。

这份总结提要基本遵循CS230的授课思路和流程,分三大方面由浅入深地介绍了深度学习的基本概念、网络模型、研究和实验操作方法等。三部分内容分别为:卷积神经网络、递归神经网络、提示与技巧。

本文主要介绍这份总结的第一部分,即CNN部分的内容,后两部分RNN、窍门与技巧部分,读者可自行参看Github上放出的资源:

卷积神经网络(CNN)

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks

递归神经网络(RNN)

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

技巧与窍门

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks

囊括全部内容的“超级VIP”pdf下载

https://github.com/afshinea/stanford-cs-230-deep-learning/blob/master/super-cheatsheet-deep-learning.pdf

卷积神经网络结构:卷积层、池化层、全连接层

传统的卷积神经网络由输入图像、卷积层、池化层和全连接层构成。

卷积层(CONV):使用过滤器执行卷积操作,扫描输入大小。它的超参数包括滤波器的Size和Stride。结果输出O称为特征映射或激活映射。

池化层(POOL)是一种下采样操作,通常在卷积层之下使用,该卷积层执行一些空间不变性。其中最大池化和平均池化属于特殊操作,分别采用最大值和平均值。

全连接层(FC)在平坦输入上运行,每个输入都连接到所有神经元。如果全连接层存在,通常位于网络体系结构的末尾,可用于优化诸如分类评分等目标。

过滤器超参数

过滤器维度: 大小为F×F的过滤器应用在C channel上维度为F×F×C。

Stride:对于卷积和池化操作而言,Stride表示每次操作后窗口移动的像素数量。

Zero-padding表示对输入边界的每一端加入P个零的过程。这个值可以通过下图中所示的三个方式手动指定,也可以自动设置。

超参数的调整

卷积层中的超参数兼容性:记输入量长度为I,过滤器长度为F,补零数量为P,Stride量为S,则该维度下特征映射的输出大小O可用下式表示:

理解模型的复杂度:为了获取模型复杂度,常常可以通过相应架构下的参数数量来达到这一目标。在给定的卷积神经网络层中,该过程如下图所示:

深度学习

感受野:层K上的感受野区域记为Rk×Rk,即第K次激活映射可以“看见”的每个输入像素。若层j上的过滤器大小为Fj,层i上的Stride值为Si,且S0=1,则层k上的感受野可以由下式计算出:

深度学习

常用激活函数

整流线性单元 : 整流线性单元层(ReLU)是激活函数g,作用于所有元素。它旨在为网络引入非线性特征,其变量总结在下图中:

深度学习

Softmax:可以视作一个作用于网络架构末端通用逻辑函数,输入为分数向量,输出为概率向量。其定义如下:

深度学习

物体检测

模型的类型:

有三类主要的物体识别算法,其预测的性质是不同的。如下表的描述:

三类物体识别算法

检测(Detection):

在对象检测的上下文中,根据我们是仅想要定位对象还是想要在图像中检测更复杂的形状,可以使用不同的方法。下面总结了两个主要的方法:

边界框检测和特征点检测

Intersection over Union:

Intersection over Union(交并比),也称为IoU,是一种量化预测边界框深度学习在实际边界框深度学习上的正确定位的函数。它的定义是:

深度学习

备注:IoU∈[0,1]。按照惯例,如果IoU(Bp,Ba)⩾0.5,预测边界框Bp被认为是合理的。

Anchor boxes:

Anchor boxing是一种用于预测重叠边界框的技术。在实际应用中,网络可以同时预测多个box,其中每个box的预测被约束具有给定的一组几何特性。例如,第一个预测可能是给定形状的矩形框,而第二个预测可能是另一个形状不同的矩形框。

Non-max suppression:

Non-max suppression技术旨在通过选择最具代表性的对象来删除同一对象的重叠边界框。在删除了概率预测低于0.6的所有框之后,在剩余框中重复以下步骤:

对于一个给定的类,

步骤1:选择具有最大预测概率的框。

步骤2:删除任何与前一个框的IoU⩾0.5的框。

YOLO - You Only Look Once,这是一种对象检测算法,它执行以下步骤:

步骤1:将输入图像分割成G×G的网格。

步骤2:对于每个网格单元,运行一个CNN网络,预测下面公式中的y:

深度学习

其中深度学习是检测对象的概率,深度学习是检测到的边界框的属性,深度学习是检测到的p类的one-hot representation,k是anchor boxes的数量。

步骤3:运行 non-max suppression 算法,删除任何可能的重复重叠边界框。

R-CNN

Region with Convolutional Neural Networks (R-CNN) 是一种对象检测算法,它首先对图像进行分割以找到潜在的相关边界框,然后运行检测算法,在那些边界框中找到最可能的对象。

备注:虽然原始算法计算成本高且速度慢,但新的架构能让算法运行得更快,例如Fast R-CNN和Faster R-CNN。

面部验证和识别

模型类型:下面总结了两种主要类型的模型:

One Shot Learning

One Shot Learning是一种面部验证算法,它使用有限的训练集来学习相似函数,该函数量化两个给定图像的差异。应用于两个图像的相似度函数通常被标注为d(image 1,image 2).。

Siamese Network

Siamese Networks的目的是学习如何编码图像,然后量化不同的两个图像。对于给定的输入图像深度学习,编码输出通常记为深度学习

Triplet loss

Triplet loss ℓ是在图像A (anchor), P (positive) 和N (negative)这三个图像的嵌入表示上计算的损失函数。 anchor和positive示例属于同一个类,negative示例属于另一个类。通过调用深度学习margin参数,该损失定义如下:

深度学习

深度学习

神经风格迁移

动机:

神经风格转移(neural style transfer)的目标是基于给定内容C和给定风格S,生成图像G。

激活:

在给定层l中,激活被标记为深度学习,并且具有维度深度学习

内容成本函数(Content cost function)

内容成本函数深度学习用于确定生成的图像G与原始内容图像C的不同之处。它的定义如下:

深度学习

风格矩阵(Style matrix)

style matrix深度学习是一个Gram矩阵,其中每个元素深度学习量化了通道k和k'的相关性。它是根据激活深度学习

深度学习

风格成本函数(Style cost function )

风格成本函数深度学习用于确定生成的图像G与风格S的不同之处。它的定义如下:

深度学习

总成本函数(Overall cost function)

总成本函数的定义是内容和风格成本函数的组合,由参数α, β加权,如下所示:

深度学习

使用计算技巧的架构

生成对抗网络(Generative Adversarial Network)

生成对抗网络,也称为GAN,由生成模型和判别模型组成,其中生成模型旨在生成最真实的输出,这些输出将被用于区分生成图像和真实图像。

ResNet(Residual Network)

残差网络架构(也称为ResNet),使用具有大量层的residual blocks来减少训练误差。 residual blocks 具有以下特征:

深度学习

Inception Network 

该架构使用 inception modules,目的是尝试不同的卷积,以通过特征的多样化来提高其性能。具体来说,它使用1×1卷积技巧来限制计算负担。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分