云计算就像是天上的云,看得见摸不着,像章鱼的大脑,边缘计算就类似于八爪鱼的那些小爪子,一个爪子就是一个小型的机房,靠近具体的实物。
边缘计算是何方神圣,它和云计算又是如何相爱相杀的呢?
首先什么是边缘计算?我们先说点其他的,比如人……
我们首先大脑里勾画一张图,就是一张人类大脑神经网络图,如果你还想不到,那直接看下图。
把云计算看作是大脑,那么边缘计算就像是大脑输出的神经触角,这些触角连接到各个终端运行各种动作。
如果还觉得抽象,那我们再打个不太精准的比方吧。
再用你的云大脑想象出一只章鱼,就是可以当刺身来吃的那种八爪鱼:
或者可爱一点的这样的
作为自然界中智商最高的无脊椎动物,拥有“概念思维”能力,与他两个强大的记忆系统分不开。一个是大脑记忆系统,大脑具有5亿个神经元,另一个是八个爪子上的吸盘。也就是说,章鱼的八条腿可以思考并解决问题。
脑子真是个好东西,章鱼就有好几个!
话说回来,云计算就像是天上的云,看得见摸不着,像章鱼的大脑,边缘计算就类似于八爪鱼的那些小爪子,一个爪子就是一个小型的机房,靠近具体的实物。边缘计算更靠近设备端,更靠近用户。
这么说吧,云计算是把握整体,那么边缘计算就更专注于局部。那么边缘计算的优势就显而易见。
01、近水楼台先得月
边缘计算分布式以及靠近设备端的特性注定它实时处理的优势,所以它能够更好的支撑本地业务实时处理与执行。
02、简单不粗暴效率高
家门口的事情就不麻烦远在天边的云计算了,边缘计算直接对终端设备的数据进行过滤和分析,节能省时效率还高。
03、省心省力省流量
边缘计算减缓数据爆炸和网络流量的压力,用过边缘节点进行数据处理,减少从设备到云端的数据流量。
04、智能更节能
AI+边缘计算组合的边缘计算不止于计算,智能化特点明显,另外云计算+边缘计算组合出击,成本只有单独使用云计算的39%。
打一个不太合理的比方,设想一下,本来存钱取钱大家都要去银行人工柜台处理,排队人山人海,路上交通造成堵塞,还浪费时间和精力,现在家门口就有自助柜员机,是不是再也不用取号排队等叫号?
辣么,既然边缘计算这么牛,就直接把云计算干掉吧!留它何用?
太天真了!能把章鱼的大脑切掉直接用八个爪子生活吗?你怎么不上天呐!
虽然今后会将越来越多的基础任务交给边缘计算来完成,但是这只能代表边缘所在的装置设备会越来越灵敏,但是不能直接说这些任务和云毫无关系,他们是一种让彼此更完美的存在。
边缘计算和云计算互相协同,它们是彼此优化补充的存在,共同使能行业数字化转型。云计算是一个统筹者,它负责长周期数据的大数据分析,能够在周期性维护、业务决策等领域运行。
边缘计算着眼于实时、短周期数据的分析,更好地支撑本地业务及时处理执行。边缘计算靠近设备端,也为云端数据采集做出贡献,支撑云端应用的大数据分析,云计算也通过大数据分析输出业务规则下发到边缘处,以便执行和优化处理。
再打个比方吧,总公司在北京,分点在江苏、广东、山东各地,江苏的实际工作任务由江苏分部的主管执行,但是北京总公司会给出整体工作计划,负责统筹各个区域的工作规划。
所以不管是云计算还是边缘计算,不存在一方完全取代一方的状况,只是各个擅长的领域各司其职,物尽其用罢了,在最合适的场景里用最合适的运算,或者双向出击!
所谓万物互联,以时间为横坐标延伸,最大的网络就是物联网。那么边缘计算就是靠近物联网边缘的计算、处理、优化和存储。搭载物联网的发展,边缘计算的应用也十分广泛,智慧城市、智慧家居、智慧医院、在线直播,到智能泊车、自动驾驶、无人机、智能制造等各方面都有它的身影,制霸物联网的时刻指日可待。
讲真,这个时候了解云计算、边缘计算是有点晚了,毕竟很多行业大佬已经开始玩转边缘计算了。
当然万物都有双面性,边缘计算的发展也存在不小的挑战性。
01、跨界协作的挑战
制造、能源、公共事业等行业要实现智能化,需要整合机械、电子、ICT等跨行业技术,边缘计算首先要实现OT和IT领域的深度协作,并将行业专有技术与知识与ICT数字化技术相结合。
02、技术碎片化挑战
边缘侧技术体系的每个领域都有大量的技术选择:目前业界有超过6种以上的工业实时以太技术,超过40种工业总线,还有多种公私有云平台。技术碎片化给系统间的互联互通、数据价值的挖掘带来的巨大的挑战和成本。
03、技术不确定性挑战
人工智能、区块链等新技术在行业应用还是早期探索阶段,存在不确定性风险。这些技术的早期应用者希望降低技术投资风险,获得技术应用的商业回报。
按照IDC的统计数据,到2020年将有超过500亿的终端与设备联网,未来超过50%的数据需要在网络边缘侧分析、处理与储存,边缘计算所面对的市场规模非常巨大。
物联网的存在就是不在创造新的生态,两个毫无关系的人可以通过各种方式连接,但太平洋里的章鱼如何跟大西洋里的章鱼“对话”?再赐它们几百亿个神经元也做不到,但是边缘计算可以啊!
现在你们都大概了解边缘计算了吗?
免责声明:本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。
全部0条评论
快来发表一下你的评论吧 !