电子说
PCBA焊接加热过程中经常会产生较大的温度差,一旦这个温度差超过标准就会造成焊接不良,所以我们在操作的时候必须控制好这个温度差。PCBA的热设计由很多部分构造而成,每一个部分都有着不同的作用特点。如果这个温度差比较大,就可能引起焊接不良,如QFP引脚的开焊、绳吸;片式元件的立碑、移位;BGA焊点的收缩断裂等。同理,我们可以通过改变热容量解决一些问题。
(1)热沉焊盘的热设计:在热沉元件的焊接中,会遇到热沉焊盘的少锡的现象,这是一个可以通过热沉设计改善的典型应用情况。
对于上述情况,可以采用加大散热孔热容量的办法进行设计。将散热孔与内层接地层连接,如果接地层不足6层。可以从信号层隔离出局部作散热层,同时将孔径减少到最小可用的孔径尺寸。
(2)大功率接地插孔的热设计:在一些特殊产品设计中,插装孔有时需要与多个地/电平面层连接。由于波峰焊接时引脚与锡波的接触时间也就是焊接时间非常短,往往为2~3s,如果插孔的热容量比较大,引线的温度可能达不到焊接的要求,形成冷焊点。
为了避免这种情况发生,经常用到一种叫做星月孔的设计,将焊接孔与地/电层隔开,大的电流通过功率孔实现。
(3)BGA焊点的热设计:混装工艺条件下,会出现一种特有的因焊点单向凝固而产生的“收缩断裂”现象,形成这种缺陷的根本原因是混装工艺本身的特性,但是可以通过BGA角部布线的优化设计使之慢冷而加以改善。
根据案例提供的经验,一般发生收缩断裂的焊点位于BGA的角部,可以通过加大BGA角部焊点的热容量或降低热传导速度,使其与其他焊点同步或后冷却。从而避免因先冷却而引起其在BGA翘曲应力下被拉断的现象发生。
4)片式元件焊盘的设计:片式元件随着尺寸越来越小,移位、立碑、翻转等现象越来越多。这些现象的产生与许多因素有关,但焊盘的热设计是影响比较大的一个方面。
如果焊盘的一端与比较宽的导线连接,另一端与比较窄的导线连接,那么两边的受热条件就不同,一般而言与宽导线连接的焊盘会先熔化(这点与一般的预想相反,一般总认为与宽导线连接的焊盘因热容量大而后熔化,实际上宽的导线成了热源,这与PCBA的受热方式有关),先熔化的一端产生的表面张力也可能将元件移位甚至翻转
(5)波峰焊接对元件面的影响
①BGAO:0.8mm及其以上引脚中心距的BGA大部分引脚都是通过导通孔与线路层进行连接的。波峰焊接时,热量会通过导通孔传递到元件面上的BGA焊点。根据热容量的不同,有些没有熔化、有些半熔化,在热应力作用下很容易断裂失效。
②片式电容:片式电容对应力非常敏感,容易受到机械和热应力的作用而开裂。随着托盘选择波峰焊接的广泛使用,在托盘开窗边界处的片式元件很容易因热应力而断裂。
PCBA的组装要考虑哪些问题:
焊膏印刷工艺,主要解决的是焊膏印刷量一致性的问题(填充与转移),而不是每个焊点对焊膏量的需求问题。换句话说,焊膏印刷工艺解决的是一个焊接直通率波动的问题,而不是直通率高低的问题。要解决直通率高低的问题,关键在于焊膏分配,既通过焊盘、阻焊与钢网开窗的优化与匹配设计,对每个焊点按需分配焊膏量。当然,焊膏量的一致性与设计也有关联,PCB阻焊的不同设计提供的工艺能力指数不同。
1.面积比
面积比是指钢网开窗面积与开窗孔壁面积之比,见下图:
2.转移率
转移率是指印刷时钢网开窗内焊膏被沉积到焊盘上的比率,用实际转移的焊膏量与钢网开窗体积之比表示。
3.面积比对转移率的影响
面积比是影响焊膏转移的重要因素,工程上一般要求面积比大于0.66,
在此条件下可获得70%以上的转移率,见下图:
4.面积比对设计的要求
面积比对钢网的设计有要求,主要影响精细间距元件。为了保证微细焊盘钢网开窗的面积比要求,钢网的厚度必须符合面积比的要求。这样对需要焊膏量比较多的元件,就需要通过增加钢网开窗面积的方式增加焊膏量—这就要求焊盘周围变形有空间,这是元件间距设计的一个主要考虑因素。
全部0条评论
快来发表一下你的评论吧 !