德州仪器
直播中

张琨

7年用户 176经验值
私信 关注
[问答]

了解陶瓷电容器温度系数

查看陶瓷电容器时常见的问题是温度系数数字/字母是什么意思?
这些数字通常会分解到温度范围和电容在该特定范围内的变化。
您需要了解的第一件事就是您正在考虑的标准和课程。
这些由国际电工委员会(IEC)和电子工业联盟(EIA)分开
这是一个关于不同类和定义的图表:
IEC / EN 603841&
IEC / EN 60384-8 / 9/21/22
EIA RS-198
1类陶瓷电容器为谐振威廉希尔官方网站 应用提供高稳定性和低损耗
I类陶瓷帽为谐振威廉希尔官方网站 应用提供高稳定性和低损耗
2类陶瓷电容器具有高容积效率,适用于平滑,旁路,耦合和去耦应用
II类(或写入2级)陶瓷电容器具有高容积效率,电容变化低于-15%至+ 15%,温度范围高于-55°C至+ 125°C,用于平滑,旁路,
耦合和去耦应用
3类陶瓷电容器是阻挡层电容器,不再标准化
III类(或写入3级)陶瓷电容器的容积效率高于EIA II级,在10°C至55°C的较低温度范围内,电容的典型变化为-22%至+ 56%。
它们可以用EIA级2- Y5U / Y5V或Z5U / Z5V电容代替
IV类(或写入类4)陶瓷电容器是阻挡层电容器,不再标准化
通过理解类定义,您可以了解温度系数如何分解。
每个EIA-RS-198的1级
温度系数α10-6/ K字母代码
温度系数的乘数数字代码
容差温度系数字母代码
C:0.0
0:-1
G:±30
B:0.3
1:-10
H±60
L:0.8
2:-100
J:±120
答:0.9
3:-1000
K:±250
M:1.0
4:+1
L:±500
P:1.5
6:+10
M:±1000
R:2.2
7:+100
N:±2500
S:3.3
8:+1000
T:4.7
V:5.6
你:7.5
符合IEC / EN 60384-8 / 21和EIA-RS-198的1级
陶瓷名称
温度系数α10-6/ K.
α-Tolerance 10-6 / K.
子类
IEC / EN-字母代码
EIA字母代码
P100
100
±30
1B
AG
M7G
NP0
0
±30
1B
CG
C0G
N33
-33
±30
1B
HG
H2G
N75
-75
±30
1B
LG
L2G
N150
-150
±60
1B
PH
P2H
N220
-220
±60
1B
RH
R2H
N330
-330
±60
1B
SH
S2H
N470
-470
±60
1B
TH
T2H
N750
-750
±120
1B
UJ
U2J
N1000
-1000
±250
1F
QK
Q3K
N1500
-1500
±250
1F
VK
P3K
看一下这些图表,带有EIA代码“C0G”的“NP0”电容将具有0漂移,公差为±30 ppm / K,而代码为“P3K”的“N1500”将具有-1500 ppm /
K漂移,最大公差为±250 ppm /°C。
请注意,IEC和EIA电容器代码是工业电容器代码,与军用电容器代码不同。
每个EIA RS-198的2级
低温字母代码
高温数字代码
在温度范围内改变电容的字母代码
X = -55°C(-67°F)
4 = + 65°C(+ 149°F)
P =±10%
Y = -30°C(-22°F)
5 = + 85°C(+ 185°F)
R =±15%
Z = + 10°C(+ 50°F)
6 = + 105°C(+ 221°F)
S =±22%
7 = + 125°C(+ 257°F(华氏度))
T = + 22 / -33%
8 = + 150°C(+ 302°F)
U = + 22 / -56%
9 = + 200°C(+ 392°F)
V = + 22 / -82%
例如,Z5U电容器的工作温度范围为+ 10°C至+ 85°C,电容变化最多为+ 22%至-56%。
X7R电容器的工作温度范围为-55°C至+ 125°C,电容变化最大为±15%。
以下是一些常见的Class 2配置:
X8R(-55 / + 150,ΔC/ C0 =±15%),
X7R(-55 / + 125°C,ΔC/ C0 =±15%),
X6R(-55 / + 105°C,ΔC/ C0 =±15%),
X5R(-55 / + 85°C,ΔC/ C0 =±15%),
X7S(-55 / + 125,ΔC/ C0 =±22%),
Z5U(+ 10 / + 85°C,ΔC/ C0 = + 22 / -56%),
Y5V(-30 / + 85°C,ΔC/ C0 = + 22 / -82%),
符合IEC / EN 60384-9 / 22的2级
电容变化代码
U = 0时的最大电容变化ΔC/ C0
U = UN时的最大电容变化ΔC/ C0
温度范围代码
温度范围
2B
±10%
+ 10 / -15%
1
-55 ... + 125°C
2C
±20%
+ 20 / -30%
2
-55 ... + 85°C
2D
+ 20 / -30%
+ 20 / -40%
3
-40 ... + 85°C
2E
+ 22 / -56%
+ 22 / -70%
4
-25 ... + 85°C
2F
+ 30 / -80%
+ 30 / -90%

(-10 ... +70)°C
2R
±15%
-
6
+10 ... + 85°C
2X
±15%
+ 15 / -25%
-
-
在某些情况下,可以将EIA代码转换为IEC / EN代码。
可能会发生轻微变化,但通常是可以容忍的。
X7R与2X1相关
Z5U与2E6相关
Y5V类似于2F4,像差:ΔC/ C0 = + 30 / -80%而不是+ 30 / -82%
X7S类似于2C1,像差:ΔC/ C0 =±20%而不是±22%
X8R没有IEC / EN代码可用

以上来自于谷歌翻译


以下为原文

        A common question when looking at ceramic capacitors is what do the temperature coefficient numbers/letters mean? These numbers will generally break down to a temperature range and the variation in capacitance over that specific range. The first thing you need to understand with what standard  and class you are looking at. These are split between the International Electrotechnical Commission (IEC) and the Electronic Industries Alliance (EIA)
Here is a chart on the different classes and definitions:
[tr]IEC/EN 603841 &
IEC/EN 60384-8/9/21/22EIA RS-198[/tr]
Class 1 ceramic caps offer high stability and low losses for resonant circuit applicationsClass I ceramic caps offer high stability and low losses for resonant circuit applications
Class 2 ceramic capacitors offer high volumetric efficiency for smoothing, by-pass, coupling and decoupling applicationsClass II (or written class 2) ceramic capacitors offer high volumetric efficiency with change of capacitance lower than −15% to +15% and a temperature range greater than −55 °C to +125 °C, for smoothing, by-pass, coupling and decoupling applications
Class 3 ceramic capacitors are barrier layer capacitors which are not standardized anymoreClass III (or written class 3) ceramic capacitors offer higher volumetric efficiency than EIA class II and typical change of capacitance by −22% to +56% over a lower temperature range of 10 °C to 55 °C. They can be substituted with EIA class 2- Y5U/Y5V or Z5U/Z5V capacitors
Class IV (or written class 4) ceramic capacitors are barrier layer capacitors which are not standardized anymore
With class definitions understood you can look how the temperature coefficients break down.
Class 1 per EIA-RS-198

[tr]Temperature coefficient α
10-6 /K Letter codeMultiplier of the temperature
coefficient Number codeTolerance of the temperature
coefficient Letter code[/tr]
C: 0.00: -1G: ± 30
B: 0.31: -10H ± 60
L: 0.82: −100J: ±120
A: 0.93: −1000K: ±250
M: 1.04: +1L: ±500
P: 1.56: +10M: ±1000
R: 2.27: +100N: ±2500
S: 3.38: +1000
T: 4.7
V: 5.6
U: 7.5
Class 1 per IEC/EN 60384-8/21 and EIA-RS-198

[tr]Ceramic namesTemperature coefficient α 10-6 /Kα-Tolerance 10-6 /KSub-classIEC/ EN- letter codeEIA letter code[/tr]
P100100±301BAGM7G
NP00±301BCGC0G
N33−33±301BHGH2G
N75−75±301BLGL2G
N150−150±601BPHP2H
N220−220±601BRHR2H
N330−330±601BSHS2H
N470−470±601BTHT2H
N750−750±1201BUJU2J
N1000−1000±2501FQKQ3K
N1500−1500±2501FVKP3K
Looking at these charts you see, an “NP0” capacitor with EIA code “C0G” will have 0 drift, with a tolerance of ±30 ppm/K, while an “N1500” with the code “P3K” will have −1500 ppm/K drift, with a maximum tolerance of ±250 ppm/°C.
Note that the IEC and EIA capacitor codes are industry capacitor codes and not the same as military capacitor codes.
Class 2 per EIA RS-198

[tr]Letter Code for Low TempNumber Code for High TempLetter code for change of capacitance
over the temp range[/tr]
X = −55 °C (−67 °F)4 = +65 °C (+149 °F)P = ±10%
Y = −30 °C (−22 °F)5 = +85 °C (+185 °F)R = ±15%
Z = +10 °C (+50 °F)6 = +105 °C (+221 °F)S = ±22%
7 = +125 °C (+257 °F)T = +22/−33%
8 = +150 °C (+302 °F)U = +22/−56%
9 = +200 °C (+392 °F)V = +22/−82%
For instance, a Z5U capacitor will operate from +10 °C to +85 °C with a capacitance change of at most +22% to −56%. An X7R capacitor will operate from −55 °C to +125 °C with a capacitance change of at most ±15%.
Here are some common Class 2 configurations:
  • X8R (−55/+150, ΔC/C0 = ±15%),
  • X7R (−55/+125 °C, ΔC/C0 = ±15%),
  • X6R (−55/+105 °C, ΔC/C0 = ±15%),
  • X5R (−55/+85 °C, ΔC/C0 = ±15%),
  • X7S (−55/+125, ΔC/C0 = ±22%),
  • Z5U (+10/+85 °C, ΔC/C0 = +22/−56%),
  • Y5V (−30/+85 °C, ΔC/C0 = +22/−82%),
Class 2 per IEC/EN 60384-9/22

[tr]Code for capacitance changeMax capacitance change
ΔC/C0 at U = 0Max capacitance
change
ΔC/C0 at U = UNCode for temp rangeTemp Range[/tr]
2B±10%+10/−15%1−55 … +125 °C
2C±20%+20/−30%2−55 … +85 °C
2D+20/−30%+20/−40%3−40 … +85 °C
2E+22/−56%+22/−70%4−25 … +85 °C
2F+30/−80%+30/−90%5(-10 … +70) °C
2R±15%6+10 … +85 °C
2X±15%+15/−25%--
In some cases it is possible to translate the EIA code into the IEC/EN code. Slight variations can occur, but normally are tolerable.
  • X7R correlates with 2X1
  • Z5U correlates with 2E6
  • Y5V similar to 2F4, aberration: ΔC/C0 = +30/−80% instead of +30/−82%
  • X7S similar to 2C1, aberration: ΔC/C0 = ±20% instead of ±22%
  • X8R no IEC/EN code available

回帖(3)

卿洁

2018-10-19 23:55:29
谢谢你的桌子!
我要添加的两件事:
将它称为温度“特征”可能更为正确,因为术语“系数”通常意味着某种线性关系。
在1类器件之外,电容与温度的关系并非完全线性:
在谈到“最大电容变化”时,应该注意,这是指仅在非常特定的测试条件下测量的温度的影响。
其他因素,尤其是直流偏置效应和老化,会导致观察到的电容发生巨大变化。

以上来自于谷歌翻译


以下为原文

        Thanks for the tables!
Two things I’d add:

  • It’s probably more correct to call it a temperature “characteristic” since the term “coefficient” usually implies some sort of linear-ish relationship.  Outside of the class 1 devices, the capacitance vs. temperature relationship isn’t all that linear:


  • In speaking about a “max capacitance change” it should be noted that this refers to the effects of TEMPERATURE ONLY, measured under very specific test conditions.  Other factors, most notably DC bias effect and aging, can cause enormous changes in observed capacitance.
举报

王志强

2018-10-20 00:07:29
据我了解,TCC与容差无关。
这意味着在执行最坏情况威廉希尔官方网站 分析时,需要向TCC添加容差。
是对的吗?

以上来自于谷歌翻译


以下为原文

        As I understand it, the TCC is independent of tolerance. That would mean that one would need to add the tolerance to the TCC when performing a worst case circuit analysis. Is that right?
举报

杨洋

2018-10-20 00:25:00
那是对的。
TCC是电容器材料的函数;
与该部件的标称/理想标准相比,公差是制造不精确性的函数。
这两者可能对威廉希尔官方网站 产生类似的影响,但它们具有明显的影响,必须单独考虑。

以上来自于谷歌翻译


以下为原文

        That would be correct.  TCC is a function of the material the capacitor is made of; tolerance is a function of manufacturing imprecisions as compared to the nominal/ideal standard for that part.  The two can have similar impacts on a circuit, but they’re distinct effects that have to be accounted for separately.
举报

更多回帖

发帖
×
20
完善资料,
赚取积分