1 一般磁性、非金属磁性
巨磁电阻材料是当前磁电子学的一类重要磁性材料,而比巨磁电阻效应更高的庞磁电阻效应更受到重视。具有钙钛石型结构的锰氧体(AMnO3)是一类具有庞磁电阻的新材料,其中A是稀土元素。当稀土部分为Ca或Sr代换时,将会对结构、磁有序(磁结构)和磁转变温度(居里温度或奈尔温度)产生影响。最近利用中子衍射和磁性测量研究了(Pr,Sr)MnO3中少量Sr代换Pr时对磁结构和居里温度的影响,在Sr代换量增加时还观测到部分反铁磁结构[1]。铁磁流(液)体是一种由强磁微粒、表面活性剂和液体构成的既具有强磁性又具有流动性的新磁性材料。最近利用纳米级Fe3O4微粒、油酸铵和去离子水研制成铁磁流体,研究了这种流体的制备条件如反应液体的pH值对Fe3O4微粒形状和大小的影响,还研究了这样制成的铁磁流体的光透射性与入射光波长(450~750nm)和磁场强度(0~(1/4π)×150kA/m)的关系[2]。低频率和大功率微波技术的应用,如高能加速器、医用微波技术等,需要新的微波铁氧体材料。最近研究了为适应这一需要的多组元石榴石型(Y,Gd,Ca)3(Fe,V,In,Mn)5O12铁氧体的化学成分和工艺条件对材料结构、磁性、电阻、介电常数和铁磁共振等的影响。实验研究结果指出:在加少量Mn和最佳的预烧温度(1050℃)和烧结条件(1350~1380℃,5h)下制成的材料的Ms=500kA/m,ΔH=5.25~5.50kA/m[3]。最近在含磁性离子Mn的稀释半导体(Mn,Cd)In2Te4中首次观测到电子能级间大的Zeeman分裂和巨Faraday光旋转效应。研究表明这是由于磁性离子的d电子与似s(似p)导带电子之间的交换作用产生的。在室温下测量研究了这一晶体材料的红外光谱。研究结果显示,这种晶体的激子能量可以利用单振荡子模型得到,室温巨Faraday旋转可达到10-3(°)/cm 。比较低温和室温的磁化率可期望在低温下具有更高的Faraday旋转[4]。在磁性宏观量子效应的研究中,首先证明了单磁矩的经典拉格朗日量中是容许存在一个与拓扑项成比例的项,再通过对单自旋的绝热演化求经典极限而确定这一比例常数为1。这样便给出了单磁矩拉格朗日量的一个简化导出[5]。
1 一般磁性、非金属磁性
巨磁电阻材料是当前磁电子学的一类重要磁性材料,而比巨磁电阻效应更高的庞磁电阻效应更受到重视。具有钙钛石型结构的锰氧体(AMnO3)是一类具有庞磁电阻的新材料,其中A是稀土元素。当稀土部分为Ca或Sr代换时,将会对结构、磁有序(磁结构)和磁转变温度(居里温度或奈尔温度)产生影响。最近利用中子衍射和磁性测量研究了(Pr,Sr)MnO3中少量Sr代换Pr时对磁结构和居里温度的影响,在Sr代换量增加时还观测到部分反铁磁结构[1]。铁磁流(液)体是一种由强磁微粒、表面活性剂和液体构成的既具有强磁性又具有流动性的新磁性材料。最近利用纳米级Fe3O4微粒、油酸铵和去离子水研制成铁磁流体,研究了这种流体的制备条件如反应液体的pH值对Fe3O4微粒形状和大小的影响,还研究了这样制成的铁磁流体的光透射性与入射光波长(450~750nm)和磁场强度(0~(1/4π)×150kA/m)的关系[2]。低频率和大功率微波技术的应用,如高能加速器、医用微波技术等,需要新的微波铁氧体材料。最近研究了为适应这一需要的多组元石榴石型(Y,Gd,Ca)3(Fe,V,In,Mn)5O12铁氧体的化学成分和工艺条件对材料结构、磁性、电阻、介电常数和铁磁共振等的影响。实验研究结果指出:在加少量Mn和最佳的预烧温度(1050℃)和烧结条件(1350~1380℃,5h)下制成的材料的Ms=500kA/m,ΔH=5.25~5.50kA/m[3]。最近在含磁性离子Mn的稀释半导体(Mn,Cd)In2Te4中首次观测到电子能级间大的Zeeman分裂和巨Faraday光旋转效应。研究表明这是由于磁性离子的d电子与似s(似p)导带电子之间的交换作用产生的。在室温下测量研究了这一晶体材料的红外光谱。研究结果显示,这种晶体的激子能量可以利用单振荡子模型得到,室温巨Faraday旋转可达到10-3(°)/cm 。比较低温和室温的磁化率可期望在低温下具有更高的Faraday旋转[4]。在磁性宏观量子效应的研究中,首先证明了单磁矩的经典拉格朗日量中是容许存在一个与拓扑项成比例的项,再通过对单自旋的绝热演化求经典极限而确定这一比例常数为1。这样便给出了单磁矩拉格朗日量的一个简化导出[5]。
举报