综合技术
直播中

曹兵

7年用户 144经验值
私信 关注
[问答]

毫米波雷达是什么?

所谓的毫米波是无线电波中的一段,我们把波长为1~10毫米的电磁波称毫米波,它位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。毫米波的理论和技术分别是微波向高频的延伸和光波向低频的发展。



回帖(5)

刘建军

2019-8-5 16:17:46
所谓的毫米波雷达,就是指工作频段在毫米波频段的雷达,测距原理跟一般雷达一样,也就是把无线电波(雷达波)发出去,然后接收回波,根据收发之间的时间差测得目标的位置数据。毫米波雷达就是这个无线电波的频率是毫米波频段。
由于毫米波的波长介于厘米波和光波之间,因此毫米波兼有微波制导和光电制导的优点。同厘米波导引头相比,毫米波导引头具有体积小、质量轻和空间分辨率高的特点。与红外、激光、电视等光学导引头相比,毫米波导引头穿透雾、烟、灰尘的能力强,具有全天候(大雨天除外)全天时的特点。另外,毫米波导引头的抗干扰、反隐身能力也优于其他微波导引头。
毫米波雷达是测量被测物体相对距离、现对速度、方位的高精度传感器,早期被应用于军事领域,随着雷达技术的发展与进步,毫米波雷达传感器开始应用于汽车电子、无人机、智能交通等多个领域。
举报

欧建杭

2019-8-5 16:17:52
毫米波雷达的特性
1、频带极宽,在目前所利用的35G、94G这两个大气窗口中可利用带宽分别为16G和23G,适用与各种宽带信号处理;
2、可以在小的天线孔径下得到窄波束,方向性好,有极高的空间分辨力,跟踪精度高;
3、有较高的多普勒带宽,多普勒效应明显,具有良好的多普勒分辨力,测速精度较高;
4、地面杂波和多径效应影响小,跟踪性能好;
5、毫米波散射特性对目标形状的细节敏感,因而,可提高多目标分辨和对目标识别的能力与成像质量;
6、由于毫米波雷达以窄波束发射,具有低被截获性能,抗电子干扰性能好;
7、毫米波雷达具有一定的反隐身功能。
8、毫米波具有穿透烟、灰尘和雾的能力,可全天候工作。
举报

刘超

2019-8-5 16:18:22
毫米波雷达测距的优势
精度高抗干扰
同微波导引头相比,毫米波导引头具有体积小、质量轻和空间分辨率高的特点。在天线口径相同的情况下,毫米波雷达有更窄的波束(一般为毫弧度量级),可提高雷达的角分辨能力和测角精度,并且有利于抗电子干扰、杂波干扰和多径反射干扰等。
全天候全天时
与红外、视频、激光等光学导引头相比,毫米波导引头穿透雾、烟、灰尘的能力强,具有全天候全天时的特点。
高分辨多目标
由于工作频率高,可能得到大的信号带宽(如吉赫量级)和多普勒频移,有利于提高距离和速度的测量精度和分辨能力并能分析目标细节特征。同时毫米波雷达能分辨识别很小的目标,并且能同时识别多个目标,因此具有很强的空间分辨和成像能力。
敏感高误报低
系统敏感性高,错误误报率低,不易受外界电磁噪声的干扰。
高频率低功率
具有更高的发射频率,更低的发射功率。
可测速可测距
采用FMCW调频连续波,能同时测出多个目标的距离和速度,并可对目标连续跟踪,甚至到静止目标也可保持跟踪不丢失。
距离远实时性高
测量距离远,达到双向12车道200米远,同时38Hz 26ms的检测频率具有极强的实时性。
毫米波雷达的工作原理
以车载毫米波雷达为例,雷达通过天线向外发射毫米波,接收目标反射信号,经后方处理后快速准确地获取汽车车身周围的物理环境信息(如汽车与其他物体之间的相对距离、相对速度、角度、运动方向等),然后根据所探知的物体信息进行目标追踪和识别分类,进而结合车身动态信息进行数据融合,最终通过中央处理单元(ECU)进行智能处理。经合理决策后,以声、光及触觉等多种方式告知或警告驾驶员,或及时对汽车做出主动干预,从而保证驾驶过程的安全性和舒适性,减少事故发生几率。

在汽车主动安全领域,汽车毫米波雷达传感器是核心部件之一,其中77GHZ毫米波雷达是智能汽车上必不可少的关键部件,是能够在全天候场景下快速感知0-200米范围内周边环境物体距离、速度、方位角等信息的传感器件。
位置
毫米波雷达通过发射天线发出相应波段的有指向性的毫米波,当毫米波遇到障碍目标后反射回来,通过接收天线接收反射回来的毫米波。根据毫米波的波段,通过公式计算毫米波在途中飞行的时间,再结合前车行驶速度和本车的行驶速度因素,就可以知道毫米波雷达(本车)和目标之间的相对距离了,同时也就知道目标的位置。
速度
此外,根据多普勒效应,毫米波雷达的频率变化、本车及跟踪目标的相对速度是紧密相关的,根据反射回来的毫米波频率的变化,可以得知前方实时跟踪的障碍物目标和本车相比的相对运动速度。因此,表现出来就是,传感器发出安全距离报警时,若本车继续加速、或前监测目标减速、或前监测目标静止的情况下,毫米波反射回波的频率将会越来越高,反之则频率越来越低。
方位角
关于被监测目标的方位角测量问题,毫米雷达的探测原理是:通过毫米波雷达的发射天线发射出毫米波后,遇到被监测物体,反射回来,通过毫米波雷达并列的接收天线,通过收到同一监测目标反射回来的毫米波的相位差,就可以计算出被监测目标的方位角了。原理图如下:

方位角αAZ是通过毫米波雷达接收天线RX1和接收天线RX2之间的几何距离d,以及两根毫米波雷达天线所收到反射回波的相位差b,然后通过三角函数计算得到方位角αAZ的值,这样就可以知道被监测目标的方位角了。
位置、速度和方位角监测是毫米波雷达擅长之处,再结合毫米波雷达较强的抗干扰能力,可以全天候全天时稳定工作,因此毫米波雷达被选为汽车核心传感技术。
毫米波雷达与激光雷达
随着自动驾驶的火热,激光雷达受到前所未有的追捧,因为其具有高精度、大信息量、不受可见光干扰的优势。但我们可以注意到,目前主流的自动驾驶方案并未完全抛弃毫米波雷达,这又是什么原因呢?

相比起激光雷达,毫米波雷达的探测距离可以轻松超过200米,而激光雷达一般不到150米。在高速行驶的场景里,毫米波雷达更适合。
其次,由于激光雷达在收发器和组装工艺要求高,所以成本比较难降下来。而毫米波雷达因为它是硅基的芯片,没有特别昂贵和复杂的工艺,所以毫米波雷达成本更具优势。毫米波雷达目前的价格大概在1.5千左右,而激光雷达的价格目前仍然是以万作为单位计算的。并且由于激光雷达获取的数据量远超毫米波雷达,所以需要更高性能的处理器处理数据,更高性能的处理器同时也意味着更高的价格。所以对于工程师而言,在简单场景中,毫米波雷达仍然是最优选择。
但是,毫米波雷达的缺点也十分直观,探测距离受到频段损耗的直接制约,无法感知行人,并且对周边所有障碍物无法进行精准的建模。而对于毫米波雷达的市场前景,一辆车上会搭载3-8颗毫米波雷达,目前奔驰的高端车上也已经安装了7颗。未来几年,车载毫米波雷达的市场规模将不容小觑。
激光雷达目前还有一个非常重要的技术是固态激光雷达,它实际上与传统雷达、毫米波雷达是一脉相承的,固态激光雷达实质上就是调整每个发射和接收单元的相位,毫米波雷达也是同样的原理,只不过毫米波雷达是对电磁波进行操作,器件的实现难度要比对光的频段上进行相位的改变的难度低很多。未来,固态激光雷达与毫米波雷达相结合或许是个不错的选择。
总之,毫米波雷达是很难被取代的传感器,虽有不足之处,但全天候的工作状态是最大优势。其测速、测距的精度要远高于视觉传感器,与激光雷达相比,穿透力会更好。但是整体来讲,这并不冲突,因为未来会走向融合的趋势,特别是针对自动驾驶驾驶,毋庸置疑三大传感器会相互融合。
举报

李丽虹

2019-8-5 16:18:53
毫米波雷达的主要应用分类
1、制导雷达、火控雷达,该类型雷达目前有一些选择在毫米波波段的主要原因是提高探测能力、减小雷达体积,降低重量和体积,便于集成。
2、目标检测雷达,该类型雷达主要是通过机械/电子波束扫描,实现对观测区域目标距离、速度和角度的探测,配备相应的数据处理单元,可以实现对目标的识别(散射特性)、跟踪和预测(kalman滤波、粒子滤波等)。

3、毫米波对地观测雷达,该类型雷达主要是毫米波合成孔径雷达(Synthetic Aperture Radar, SAR),该类型雷达主要实现对地成像观测,获取地面区域的SAR图像。

4、毫米波近距探测雷达,该类型雷达主要实现2米以内目标的二维或三维成像检测,目前该类型系统的波段在30~37.5 GHz,以及94~200 GHz或者THz波段都有。比如目前美国机场的人体安检三维扫描雷达,通过毫米波代替X光等实现对人体衣服内、皮肤外之间目标的检测成像,来加强安保;还有通过35GHz波段雷达或者94GHz以及THz波段雷达实现对一些特殊材料的无损三维检测等。

5、汽车雷达,在汽车上安装雷达传感器,实现汽车的防撞、自动泊车、行人检测等,目前主流的汽车雷达为24GHz雷达,但是受限于频段管制、射电天文5Km不允许该波段雷达使用以及自身体积大(主要是天线体积大)等原因,目前77GHz的汽车雷达正在逐步产品化并装备一些高端汽车,77GHz汽车雷达的主要优点是分配的频段更宽,距离分辨率更高,体积相比24GHz雷达小,目标探测能力强,但是77GHz雷达的生产加工工艺要求更高,不过目前来看,这个问题已经不是行业壁垒。
举报

更多回帖

发帖
×
20
完善资料,
赚取积分