加速度计和陀螺仪
加速度计的用途是测量以重力(G)为单位的加速度值。MEMS器件在具有高噪声源的应用中能够提供高精度。一些器件使用压电(piezoelectric)效应来确定加速度值,这些器件包含微晶体结构,在有加速度力时产生应力,继而产生相应的AC/DC电压。在大多数情况下,设计工程师倾向于选择电容式或热微机电加速度计(thermal micro-electromechanical accelerometer)。但要为其应用选择合适的加速度计,需要考虑几个重要的变量,其中包括传感器结构、谐振、可靠性、稳定性、带宽和功耗等等。
与加速度计不同,陀螺仪传感器测量的是角速度,其单位是每秒度数(°/ s)或每秒转数(rps),角速度仅仅是转速的测量。在选择陀螺仪时,必须考虑可靠性、工作温度范围以及对电磁干扰的潜在敏感性等等,由噪声源引起的误差可能会影响测量精度,并因此影响系统设计。
用于安全气囊控制的碰撞传感器是汽车系统中最经典的应用。它主要由MEMS惯性传感器(加速度计和陀螺仪)组成,加速度计连续测量汽车的加速度,当该参数超过预定阈值时,微控制器单元(MCU)能够计算出加速度的积分值,以确定是否发生了相当大的速度变化。安全气囊中通常采用单/双轴加速度传感器,在某些设计中,也可以使用角速度传感器。
STMicroelectronics的AIS1120SX/AIS2120SX 三轴加速度计具有高测量分辨率和低噪声水平,能够提供不同的工作模式以实现节省能源、系统唤醒等智能功能。这些高G加速度传感器具有完整的信号幅度检测范围,以及扩展的工作温度范围(图3),适用于汽车安全系统中的安全气囊准确部署。意法半导体的产品组合还包括6轴iNEMO 系统,加速度计和陀螺仪传感器都封装在同一芯片内。
图3:STMicroelectronics AIS1120SX的框图。
ADXRS910是ADI公司基于MEMS技术的陀螺仪,它专为汽车侧翻检测应用而设计。该器件包含一个内部温度传感器,用于补偿失调和灵敏度性能,在- 40℃~+ 105℃的温度范围内具有非常高的稳定性。该陀螺仪可提供±300°/s的完整范围,可通过SPI通信(最高10MHz)进行数据读取。它采用SOIC封装,工作电压为3.3V和5V,工作电流小于20mA(见图4)。
图4:ADXRS910的框图。
加速度计和陀螺仪
加速度计的用途是测量以重力(G)为单位的加速度值。MEMS器件在具有高噪声源的应用中能够提供高精度。一些器件使用压电(piezoelectric)效应来确定加速度值,这些器件包含微晶体结构,在有加速度力时产生应力,继而产生相应的AC/DC电压。在大多数情况下,设计工程师倾向于选择电容式或热微机电加速度计(thermal micro-electromechanical accelerometer)。但要为其应用选择合适的加速度计,需要考虑几个重要的变量,其中包括传感器结构、谐振、可靠性、稳定性、带宽和功耗等等。
与加速度计不同,陀螺仪传感器测量的是角速度,其单位是每秒度数(°/ s)或每秒转数(rps),角速度仅仅是转速的测量。在选择陀螺仪时,必须考虑可靠性、工作温度范围以及对电磁干扰的潜在敏感性等等,由噪声源引起的误差可能会影响测量精度,并因此影响系统设计。
用于安全气囊控制的碰撞传感器是汽车系统中最经典的应用。它主要由MEMS惯性传感器(加速度计和陀螺仪)组成,加速度计连续测量汽车的加速度,当该参数超过预定阈值时,微控制器单元(MCU)能够计算出加速度的积分值,以确定是否发生了相当大的速度变化。安全气囊中通常采用单/双轴加速度传感器,在某些设计中,也可以使用角速度传感器。
STMicroelectronics的AIS1120SX/AIS2120SX 三轴加速度计具有高测量分辨率和低噪声水平,能够提供不同的工作模式以实现节省能源、系统唤醒等智能功能。这些高G加速度传感器具有完整的信号幅度检测范围,以及扩展的工作温度范围(图3),适用于汽车安全系统中的安全气囊准确部署。意法半导体的产品组合还包括6轴iNEMO 系统,加速度计和陀螺仪传感器都封装在同一芯片内。
图3:STMicroelectronics AIS1120SX的框图。
ADXRS910是ADI公司基于MEMS技术的陀螺仪,它专为汽车侧翻检测应用而设计。该器件包含一个内部温度传感器,用于补偿失调和灵敏度性能,在- 40℃~+ 105℃的温度范围内具有非常高的稳定性。该陀螺仪可提供±300°/s的完整范围,可通过SPI通信(最高10MHz)进行数据读取。它采用SOIC封装,工作电压为3.3V和5V,工作电流小于20mA(见图4)。
图4:ADXRS910的框图。
举报