综合技术
登录
直播中
李丽波
7年用户
207经验值
私信
关注
[问答]
SAR ADC怎么实现更高效率?
开启该帖子的消息推送
SAR
adc
精密测量已延伸到需要越来越高
电源
效率的应用领域。物联网的到来使这一点尤为明显,因为物联网更加需要具有精密测量能力的无线传感器节点,电池供电的可穿戴健身/医疗设备,以及使用隔离电源供电、4mA到20mA环路供电或电池供电现场仪表的工业信号链。在这些场景中,电源效率越高,意味着电池使用时间越长,维护越少,电源设计越简单。
回帖
(5)
李萍
2019-8-9 15:46:30
通常,精密测量系统将低压差稳压器(LDO)作为其电源方案的一部分,利用它来为精密ADC产生低噪声电源轨。然而,LDO的功率输出效率非常低下,大部分功率常常作为热量损失掉。本文讨论为精密逐次逼近型(SAR)ADC实现更高效率电源解决方案的途径。实现方法是在迟滞模式下使用超低功耗开关稳压器,并分析性能得失——包括通过某种方式来智能控制开关稳压器,使之与SAR转换同步,从而改善噪声性能。
在中高负载电流(数百mA到数A)的测量系统中,固定频率或脉宽调制(PWM)开关稳压器可非常有效地(常常大于90%)产生电源轨。然而,效率虽然高,但代价是会有开关纹波,其频率通常是固定的,从数百kHz到数MHz。如图1所示,典型精密SAR ADC的电源抑制比(PSRR)在低频至约100kHz时是非常好的——超过此频率时,PSRR迅速下降。
图1. SAR ADC模拟电源抑制与频率的关系
精密SAR ADC以较低吞吐速率运行时,供应VDD线的典型负载电流在数mA或μA范围——因此,相比于LDO,使用固定频率开关稳压器直接为ADC供电在效率上没有优势。
然而,高效率、超低功耗降压开关稳压器可在迟滞模式下工作,其静态电流非常低。
在迟滞模式下,通过调节恒定峰值电感电流,稳压器利用PWM脉冲使输出电压略高于标称输出电压。当输出电压提高到输出检测信号超过迟滞上限时,稳压器进入待机模式。在待机模式下,高端和低端MOSFET及大部分威廉希尔官方网站 都禁用,静态电流很低,效率性能很高,如图2所示。待机模式期间,输出电容将能量送入负载,输出电压降低到低于迟滞比较器下限为止。稳压器唤醒,产生PWM脉冲,再次对输出充电。
图2. PWM(上图)和迟滞模式(下图)——效率与负载电流的关系
在迟滞情况下,开关纹波频率与负载电流和LC网络有关;对于数mA的负载,其在kHz范围内。在数kHz时,精密ADC的PSRR非常好,能够很好地抑制/衰减ADC数字输出端的开关纹波。
通常,精密测量系统将低压差稳压器(LDO)作为其电源方案的一部分,利用它来为精密ADC产生低噪声电源轨。然而,LDO的功率输出效率非常低下,大部分功率常常作为热量损失掉。本文讨论为精密逐次逼近型(SAR)ADC实现更高效率电源解决方案的途径。实现方法是在迟滞模式下使用超低功耗开关稳压器,并分析性能得失——包括通过某种方式来智能控制开关稳压器,使之与SAR转换同步,从而改善噪声性能。
在中高负载电流(数百mA到数A)的测量系统中,固定频率或脉宽调制(PWM)开关稳压器可非常有效地(常常大于90%)产生电源轨。然而,效率虽然高,但代价是会有开关纹波,其频率通常是固定的,从数百kHz到数MHz。如图1所示,典型精密SAR ADC的电源抑制比(PSRR)在低频至约100kHz时是非常好的——超过此频率时,PSRR迅速下降。
图1. SAR ADC模拟电源抑制与频率的关系
精密SAR ADC以较低吞吐速率运行时,供应VDD线的典型负载电流在数mA或μA范围——因此,相比于LDO,使用固定频率开关稳压器直接为ADC供电在效率上没有优势。
然而,高效率、超低功耗降压开关稳压器可在迟滞模式下工作,其静态电流非常低。
在迟滞模式下,通过调节恒定峰值电感电流,稳压器利用PWM脉冲使输出电压略高于标称输出电压。当输出电压提高到输出检测信号超过迟滞上限时,稳压器进入待机模式。在待机模式下,高端和低端MOSFET及大部分威廉希尔官方网站 都禁用,静态电流很低,效率性能很高,如图2所示。待机模式期间,输出电容将能量送入负载,输出电压降低到低于迟滞比较器下限为止。稳压器唤醒,产生PWM脉冲,再次对输出充电。
图2. PWM(上图)和迟滞模式(下图)——效率与负载电流的关系
在迟滞情况下,开关纹波频率与负载电流和LC网络有关;对于数mA的负载,其在kHz范围内。在数kHz时,精密ADC的PSRR非常好,能够很好地抑制/衰减ADC数字输出端的开关纹波。
举报
全娟
2019-8-9 15:46:41
通常,精密测量系统将低压差稳压器(LDO)作为其电源方案的一部分,利用它来为精密ADC产生低噪声电源轨。然而,LDO的功率输出效率非常低下,大部分功率常常作为热量损失掉。本文讨论为精密逐次逼近型(SAR)ADC实现更高效率电源解决方案的途径。实现方法是在迟滞模式下使用超低功耗开关稳压器,并分析性能得失——包括通过某种方式来智能控制开关稳压器,使之与SAR转换同步,从而改善噪声性能。
在中高负载电流(数百mA到数A)的测量系统中,固定频率或脉宽调制(PWM)开关稳压器可非常有效地(常常大于90%)产生电源轨。然而,效率虽然高,但代价是会有开关纹波,其频率通常是固定的,从数百kHz到数MHz。如图1所示,典型精密SAR ADC的电源抑制比(PSRR)在低频至约100kHz时是非常好的——超过此频率时,PSRR迅速下降。
图1. SAR ADC模拟电源抑制与频率的关系
精密SAR ADC以较低吞吐速率运行时,供应VDD线的典型负载电流在数mA或μA范围——因此,相比于LDO,使用固定频率开关稳压器直接为ADC供电在效率上没有优势。
然而,高效率、超低功耗降压开关稳压器可在迟滞模式下工作,其静态电流非常低。
在迟滞模式下,通过调节恒定峰值电感电流,稳压器利用PWM脉冲使输出电压略高于标称输出电压。当输出电压提高到输出检测信号超过迟滞上限时,稳压器进入待机模式。在待机模式下,高端和低端MOSFET及大部分威廉希尔官方网站 都禁用,静态电流很低,效率性能很高,如图2所示。待机模式期间,输出电容将能量送入负载,输出电压降低到低于迟滞比较器下限为止。稳压器唤醒,产生PWM脉冲,再次对输出充电。
图2. PWM(上图)和迟滞模式(下图)——效率与负载电流的关系
在迟滞情况下,开关纹波频率与负载电流和LC网络有关;对于数mA的负载,其在kHz范围内。在数kHz时,精密ADC的PSRR非常好,能够很好地抑制/衰减ADC数字输出端的开关纹波。
通常,精密测量系统将低压差稳压器(LDO)作为其电源方案的一部分,利用它来为精密ADC产生低噪声电源轨。然而,LDO的功率输出效率非常低下,大部分功率常常作为热量损失掉。本文讨论为精密逐次逼近型(SAR)ADC实现更高效率电源解决方案的途径。实现方法是在迟滞模式下使用超低功耗开关稳压器,并分析性能得失——包括通过某种方式来智能控制开关稳压器,使之与SAR转换同步,从而改善噪声性能。
在中高负载电流(数百mA到数A)的测量系统中,固定频率或脉宽调制(PWM)开关稳压器可非常有效地(常常大于90%)产生电源轨。然而,效率虽然高,但代价是会有开关纹波,其频率通常是固定的,从数百kHz到数MHz。如图1所示,典型精密SAR ADC的电源抑制比(PSRR)在低频至约100kHz时是非常好的——超过此频率时,PSRR迅速下降。
图1. SAR ADC模拟电源抑制与频率的关系
精密SAR ADC以较低吞吐速率运行时,供应VDD线的典型负载电流在数mA或μA范围——因此,相比于LDO,使用固定频率开关稳压器直接为ADC供电在效率上没有优势。
然而,高效率、超低功耗降压开关稳压器可在迟滞模式下工作,其静态电流非常低。
在迟滞模式下,通过调节恒定峰值电感电流,稳压器利用PWM脉冲使输出电压略高于标称输出电压。当输出电压提高到输出检测信号超过迟滞上限时,稳压器进入待机模式。在待机模式下,高端和低端MOSFET及大部分威廉希尔官方网站 都禁用,静态电流很低,效率性能很高,如图2所示。待机模式期间,输出电容将能量送入负载,输出电压降低到低于迟滞比较器下限为止。稳压器唤醒,产生PWM脉冲,再次对输出充电。
图2. PWM(上图)和迟滞模式(下图)——效率与负载电流的关系
在迟滞情况下,开关纹波频率与负载电流和LC网络有关;对于数mA的负载,其在kHz范围内。在数kHz时,精密ADC的PSRR非常好,能够很好地抑制/衰减ADC数字输出端的开关纹波。
举报
罗宏达
2019-8-9 15:47:02
通常,精密测量系统将低压差稳压器(LDO)作为其电源方案的一部分,利用它来为精密ADC产生低噪声电源轨。然而,LDO的功率输出效率非常低下,大部分功率常常作为热量损失掉。本文讨论为精密逐次逼近型(SAR)ADC实现更高效率电源解决方案的途径。实现方法是在迟滞模式下使用超低功耗开关稳压器,并分析性能得失——包括通过某种方式来智能控制开关稳压器,使之与SAR转换同步,从而改善噪声性能。
在中高负载电流(数百mA到数A)的测量系统中,固定频率或脉宽调制(PWM)开关稳压器可非常有效地(常常大于90%)产生电源轨。然而,效率虽然高,但代价是会有开关纹波,其频率通常是固定的,从数百kHz到数MHz。如图1所示,典型精密SAR ADC的电源抑制比(PSRR)在低频至约100kHz时是非常好的——超过此频率时,PSRR迅速下降。
图1. SAR ADC模拟电源抑制与频率的关系
精密SAR ADC以较低吞吐速率运行时,供应VDD线的典型负载电流在数mA或μA范围——因此,相比于LDO,使用固定频率开关稳压器直接为ADC供电在效率上没有优势。
然而,高效率、超低功耗降压开关稳压器可在迟滞模式下工作,其静态电流非常低。
在迟滞模式下,通过调节恒定峰值电感电流,稳压器利用PWM脉冲使输出电压略高于标称输出电压。当输出电压提高到输出检测信号超过迟滞上限时,稳压器进入待机模式。在待机模式下,高端和低端MOSFET及大部分威廉希尔官方网站 都禁用,静态电流很低,效率性能很高,如图2所示。待机模式期间,输出电容将能量送入负载,输出电压降低到低于迟滞比较器下限为止。稳压器唤醒,产生PWM脉冲,再次对输出充电。
图2. PWM(上图)和迟滞模式(下图)——效率与负载电流的关系
在迟滞情况下,开关纹波频率与负载电流和LC网络有关;对于数mA的负载,其在kHz范围内。在数kHz时,精密ADC的PSRR非常好,能够很好地抑制/衰减ADC数字输出端的开关纹波。
通常,精密测量系统将低压差稳压器(LDO)作为其电源方案的一部分,利用它来为精密ADC产生低噪声电源轨。然而,LDO的功率输出效率非常低下,大部分功率常常作为热量损失掉。本文讨论为精密逐次逼近型(SAR)ADC实现更高效率电源解决方案的途径。实现方法是在迟滞模式下使用超低功耗开关稳压器,并分析性能得失——包括通过某种方式来智能控制开关稳压器,使之与SAR转换同步,从而改善噪声性能。
在中高负载电流(数百mA到数A)的测量系统中,固定频率或脉宽调制(PWM)开关稳压器可非常有效地(常常大于90%)产生电源轨。然而,效率虽然高,但代价是会有开关纹波,其频率通常是固定的,从数百kHz到数MHz。如图1所示,典型精密SAR ADC的电源抑制比(PSRR)在低频至约100kHz时是非常好的——超过此频率时,PSRR迅速下降。
图1. SAR ADC模拟电源抑制与频率的关系
精密SAR ADC以较低吞吐速率运行时,供应VDD线的典型负载电流在数mA或μA范围——因此,相比于LDO,使用固定频率开关稳压器直接为ADC供电在效率上没有优势。
然而,高效率、超低功耗降压开关稳压器可在迟滞模式下工作,其静态电流非常低。
在迟滞模式下,通过调节恒定峰值电感电流,稳压器利用PWM脉冲使输出电压略高于标称输出电压。当输出电压提高到输出检测信号超过迟滞上限时,稳压器进入待机模式。在待机模式下,高端和低端MOSFET及大部分威廉希尔官方网站 都禁用,静态电流很低,效率性能很高,如图2所示。待机模式期间,输出电容将能量送入负载,输出电压降低到低于迟滞比较器下限为止。稳压器唤醒,产生PWM脉冲,再次对输出充电。
图2. PWM(上图)和迟滞模式(下图)——效率与负载电流的关系
在迟滞情况下,开关纹波频率与负载电流和LC网络有关;对于数mA的负载,其在kHz范围内。在数kHz时,精密ADC的PSRR非常好,能够很好地抑制/衰减ADC数字输出端的开关纹波。
举报
苗雨
2019-8-9 15:47:27
通常,精密测量系统将低压差稳压器(LDO)作为其电源方案的一部分,利用它来为精密ADC产生低噪声电源轨。然而,LDO的功率输出效率非常低下,大部分功率常常作为热量损失掉。本文讨论为精密逐次逼近型(SAR)ADC实现更高效率电源解决方案的途径。实现方法是在迟滞模式下使用超低功耗开关稳压器,并分析性能得失——包括通过某种方式来智能控制开关稳压器,使之与SAR转换同步,从而改善噪声性能。
在中高负载电流(数百mA到数A)的测量系统中,固定频率或脉宽调制(PWM)开关稳压器可非常有效地(常常大于90%)产生电源轨。然而,效率虽然高,但代价是会有开关纹波,其频率通常是固定的,从数百kHz到数MHz。如图1所示,典型精密SAR ADC的电源抑制比(PSRR)在低频至约100kHz时是非常好的——超过此频率时,PSRR迅速下降。
图1. SAR ADC模拟电源抑制与频率的关系
精密SAR ADC以较低吞吐速率运行时,供应VDD线的典型负载电流在数mA或μA范围——因此,相比于LDO,使用固定频率开关稳压器直接为ADC供电在效率上没有优势。
然而,高效率、超低功耗降压开关稳压器可在迟滞模式下工作,其静态电流非常低。
在迟滞模式下,通过调节恒定峰值电感电流,稳压器利用PWM脉冲使输出电压略高于标称输出电压。当输出电压提高到输出检测信号超过迟滞上限时,稳压器进入待机模式。在待机模式下,高端和低端MOSFET及大部分威廉希尔官方网站 都禁用,静态电流很低,效率性能很高,如图2所示。待机模式期间,输出电容将能量送入负载,输出电压降低到低于迟滞比较器下限为止。稳压器唤醒,产生PWM脉冲,再次对输出充电。
图2. PWM(上图)和迟滞模式(下图)——效率与负载电流的关系
在迟滞情况下,开关纹波频率与负载电流和LC网络有关;对于数mA的负载,其在kHz范围内。在数kHz时,精密ADC的PSRR非常好,能够很好地抑制/衰减ADC数字输出端的开关纹波。
通常,精密测量系统将低压差稳压器(LDO)作为其电源方案的一部分,利用它来为精密ADC产生低噪声电源轨。然而,LDO的功率输出效率非常低下,大部分功率常常作为热量损失掉。本文讨论为精密逐次逼近型(SAR)ADC实现更高效率电源解决方案的途径。实现方法是在迟滞模式下使用超低功耗开关稳压器,并分析性能得失——包括通过某种方式来智能控制开关稳压器,使之与SAR转换同步,从而改善噪声性能。
在中高负载电流(数百mA到数A)的测量系统中,固定频率或脉宽调制(PWM)开关稳压器可非常有效地(常常大于90%)产生电源轨。然而,效率虽然高,但代价是会有开关纹波,其频率通常是固定的,从数百kHz到数MHz。如图1所示,典型精密SAR ADC的电源抑制比(PSRR)在低频至约100kHz时是非常好的——超过此频率时,PSRR迅速下降。
图1. SAR ADC模拟电源抑制与频率的关系
精密SAR ADC以较低吞吐速率运行时,供应VDD线的典型负载电流在数mA或μA范围——因此,相比于LDO,使用固定频率开关稳压器直接为ADC供电在效率上没有优势。
然而,高效率、超低功耗降压开关稳压器可在迟滞模式下工作,其静态电流非常低。
在迟滞模式下,通过调节恒定峰值电感电流,稳压器利用PWM脉冲使输出电压略高于标称输出电压。当输出电压提高到输出检测信号超过迟滞上限时,稳压器进入待机模式。在待机模式下,高端和低端MOSFET及大部分威廉希尔官方网站 都禁用,静态电流很低,效率性能很高,如图2所示。待机模式期间,输出电容将能量送入负载,输出电压降低到低于迟滞比较器下限为止。稳压器唤醒,产生PWM脉冲,再次对输出充电。
图2. PWM(上图)和迟滞模式(下图)——效率与负载电流的关系
在迟滞情况下,开关纹波频率与负载电流和LC网络有关;对于数mA的负载,其在kHz范围内。在数kHz时,精密ADC的PSRR非常好,能够很好地抑制/衰减ADC数字输出端的开关纹波。
举报
更多回帖
rotate(-90deg);
回复
相关问答
SAR
adc
PCB加工如何
实现
高精度和
高效率
的钻孔呢?
2023-04-11
635
单相异步电机如何
实现
高效率
的工作
2021-01-27
1747
请问GaN器件和AMO技术能否
实现
高效率
和宽带宽?
2021-04-19
2333
高效率
高线性的功放怎么
实现
?
2019-09-17
3149
无线充电怎么提
高效率
呢,急需
2015-10-19
4239
求高手,
高效率
的高频驱动威廉希尔官方网站 推荐
2013-06-15
1944
D类放大器
高效率
实现
原理是什么?
2021-06-04
1582
LTC7803如何提
高效率
和EMI标准合规性?
2021-03-11
1460
请问如何保持PFM模式低负载时的
高效率
?
2021-04-15
1561
单片机驱动LCD如果提
高效率
?
2023-10-23
316
发帖
登录/注册
20万+
工程师都在用,
免费
PCB检查工具
无需安装、支持浏览器和手机在线查看、实时共享
查看
点击登录
登录更多精彩功能!
英国威廉希尔公司网站
william hill官网 版块
小组
免费开发板试用
ebook
直播
搜索
登录
×
20
完善资料,
赚取积分