而且由于步进电机价格低廉、可控性强等特点,使其在数控机床传送控制等自动控制领域中得到了广泛的应用。但随着技术的发展以及企业生产的要求,步进电机传统的以单片机等微处理器为核心单元的控制系统暴露出了如下缺点:控制策略单一不利于实现人机交互,而且控制威廉希尔官方网站
复杂、控制精度低、生产成本高,系统稳定性不够,步进分辨率低、缺乏灵活性,低频时的振荡和噪声大,而且受步进电机机械结构和空间的限制,步进电机的步距角不可能无限的小,难以满足高精度开环控制的需求。
由于FPGA编程方式简单,开发周期短,可靠性高,使其在工业控制领域的应用越来越广泛。本文在总结FPGA的分频技术以及步进电机细分控制原理的基础上,通过PWM控制技术来提高步进电机的分辨率,仿真和实验表明,本文采取的措施有效地实现步进电机控制的高效、精确控制。
1 步进电机细分控制原理
步进电机的工作原理如图1所示,对四相步进电机而言,按照一定的顺序对各相绕组通电即可控制电机的转动。例如,当开关B与电源导通而其他开关断开时,在磁力线的作用下B相磁极和转子0,3号对齐;当开关C与电源导通而其他开关断开时,在磁力线的作用下,转子转动,1,4号齿和C相绕组的磁极对齐。同理,依次向A,B,C,D四相绕组供电,电机就会沿着A,B,C,D方向转动。
为了理解步进电机的不足,还需了解步进电机的步距角。步距角的定义为:
θ步距=360°/(kmzn) (1)
式中:km为步进电机的工作节拍系数;zn为齿数。
受步进电机的拍数和转子齿数的限制,步进电机的步距角不可能非常小,即每一单步控制的转动量相对比较大,在许多精密控制领域,步进电机的功能达不到使用要求。因此为了提高步进电机的分辨率,需采用细分控制技术对其进行优化控制。细分控制类似于插值,其基
本原理就是将电机绕组中的电流细分,在两个控制电流之间增加许多中间状态的电流,使得步进电机可以工作在许多中间的状态,从而使得步进电机的每一步得到细分,其步距角更小,系统的分辨得到提高,性能得到优化。而细分控制通常有两种细分方式,一是使电流按线性规律变化来细分,二是按等步距角细分。为了比较两种细分方式的优劣,还需要了解步进电机工作时的静态距角特征。
M=-Mksinθ=-kti2sinθ (2)
式中:M为电磁转矩;Mk为一定绕组电流时的最大静转矩;对于反应式步进电机,当不考虑磁路饱和时,可以认为Mk与电流i的平方成正比,负号表示电磁转矩与定子磁场之间为楞次关系,即电磁转矩总是阻碍转子离开磁场最小磁阻的位置。
现以三相反应式步进电机来分析两种细分方式。三相反应式步进电机三相绕组分别通电时,其矩角特性为彼此相差120°电角度的正弦曲线,如图2所示。
当A、B两相通电时,设电流分别为iA、iB,相应的静转矩为MA、MB,忽略磁路之间的影响,其合成矩角特性为二者相叠加,如式(3)所示:
由公式(3)和(4)可知,当步进电机的电流按照线性规律变化时,其距特性如图3(a)所示。由于距角特征幅值因通电电流的不同而各不相等,因此各细分步的步距角就不能保持一致。理想的细分电流波形应使各通电状态下的步距角特性的幅值、形状均相等,如图3(b)所示。
因此电流按线性规律变化的细分方式使得细分后的每一小步的控制精度不相等。而如果按等步距角细分,则细分后的步距角为:
如果在控制威廉希尔官方网站
中严格按照电流分配系数来控制各个通电状态,则能够保证细分后的每一小步的控制精度相等。因此本文采用按等步距角的细分方式。
而且由于步进电机价格低廉、可控性强等特点,使其在数控机床传送控制等自动控制领域中得到了广泛的应用。但随着技术的发展以及企业生产的要求,步进电机传统的以单片机等微处理器为核心单元的控制系统暴露出了如下缺点:控制策略单一不利于实现人机交互,而且控制威廉希尔官方网站
复杂、控制精度低、生产成本高,系统稳定性不够,步进分辨率低、缺乏灵活性,低频时的振荡和噪声大,而且受步进电机机械结构和空间的限制,步进电机的步距角不可能无限的小,难以满足高精度开环控制的需求。
由于FPGA编程方式简单,开发周期短,可靠性高,使其在工业控制领域的应用越来越广泛。本文在总结FPGA的分频技术以及步进电机细分控制原理的基础上,通过PWM控制技术来提高步进电机的分辨率,仿真和实验表明,本文采取的措施有效地实现步进电机控制的高效、精确控制。
1 步进电机细分控制原理
步进电机的工作原理如图1所示,对四相步进电机而言,按照一定的顺序对各相绕组通电即可控制电机的转动。例如,当开关B与电源导通而其他开关断开时,在磁力线的作用下B相磁极和转子0,3号对齐;当开关C与电源导通而其他开关断开时,在磁力线的作用下,转子转动,1,4号齿和C相绕组的磁极对齐。同理,依次向A,B,C,D四相绕组供电,电机就会沿着A,B,C,D方向转动。
为了理解步进电机的不足,还需了解步进电机的步距角。步距角的定义为:
θ步距=360°/(kmzn) (1)
式中:km为步进电机的工作节拍系数;zn为齿数。
受步进电机的拍数和转子齿数的限制,步进电机的步距角不可能非常小,即每一单步控制的转动量相对比较大,在许多精密控制领域,步进电机的功能达不到使用要求。因此为了提高步进电机的分辨率,需采用细分控制技术对其进行优化控制。细分控制类似于插值,其基
本原理就是将电机绕组中的电流细分,在两个控制电流之间增加许多中间状态的电流,使得步进电机可以工作在许多中间的状态,从而使得步进电机的每一步得到细分,其步距角更小,系统的分辨得到提高,性能得到优化。而细分控制通常有两种细分方式,一是使电流按线性规律变化来细分,二是按等步距角细分。为了比较两种细分方式的优劣,还需要了解步进电机工作时的静态距角特征。
M=-Mksinθ=-kti2sinθ (2)
式中:M为电磁转矩;Mk为一定绕组电流时的最大静转矩;对于反应式步进电机,当不考虑磁路饱和时,可以认为Mk与电流i的平方成正比,负号表示电磁转矩与定子磁场之间为楞次关系,即电磁转矩总是阻碍转子离开磁场最小磁阻的位置。
现以三相反应式步进电机来分析两种细分方式。三相反应式步进电机三相绕组分别通电时,其矩角特性为彼此相差120°电角度的正弦曲线,如图2所示。
当A、B两相通电时,设电流分别为iA、iB,相应的静转矩为MA、MB,忽略磁路之间的影响,其合成矩角特性为二者相叠加,如式(3)所示:
由公式(3)和(4)可知,当步进电机的电流按照线性规律变化时,其距特性如图3(a)所示。由于距角特征幅值因通电电流的不同而各不相等,因此各细分步的步距角就不能保持一致。理想的细分电流波形应使各通电状态下的步距角特性的幅值、形状均相等,如图3(b)所示。
因此电流按线性规律变化的细分方式使得细分后的每一小步的控制精度不相等。而如果按等步距角细分,则细分后的步距角为:
如果在控制威廉希尔官方网站
中严格按照电流分配系数来控制各个通电状态,则能够保证细分后的每一小步的控制精度相等。因此本文采用按等步距角的细分方式。
举报