Jetson nano搭载四核Cortex-A57 MPCore 处理器,采用128 核 Maxwell™ GPU。支持JetPack SDK. 支持主流的AI框架和算法,例如TensorFlow, PyTorch, Caffe/Caffe2, Keras, MXNet等。
支持人脸识别,物体识别追踪,对象检测和定位等应用。
板载资源
Micro SD 卡卡槽: 可接入TF卡(16G以上),烧写系统镜像
40PIN GPIO扩展接口(兼容树莓派40PIN接口)
Micro USB接口:用于5V电源输入或者USB数据传输
千兆以太网口: 10/100/1000Base-T 自适应以太网端口
USB3.0接口:4个USB3.0接口
HDMI高清接口:用于外接HDMI屏幕
DisplayPort接口:用于外接DP屏幕
DC电源接口:用于外接5V电源(外径5.5, 内径2.1)
MIPS CSI 摄像头接口:兼容树莓派摄像头接口
性能
下面这一份表格是NVIDIA官方给出的性能对比表格,以供参考
DNR表示无法运行。
Model | Application | Framework | NVIDIA Jetson Nano | Raspberry Pi 3 | Raspberry Pi 3 + Intel Neural Compute Stick 2 | Google Edge TPU Dev Board |
ResNet-50
(224×224) | Classification | TensorFlow | 36 FPS | 1.4 FPS | 16 FPS | DNR |
MobileNet-v2
(300×300) | Classification | TensorFlow | 64 FPS | 2.5 FPS | 30 FPS | 130 FPS |
SSD ResNet-18 (960×544) | Object Detection | TensorFlow | 5 FPS | DNR | DNR | DNR |
SSD ResNet-18 (480×272) | Object Detection | TensorFlow | 16 FPS | DNR | DNR | DNR |
SSD ResNet-18 (300×300) | Object Detection | TensorFlow | 18 FPS | DNR | DNR | DNR |
SSD Mobilenet-V2 (960×544) | Object
Detection | TensorFlow | 8 FPS | DNR | 1.8 FPS | DNR |
SSD Mobilenet-V2 (480×272) | Object Detection | TensorFlow | 27 FPS | DNR | 7 FPS | DNR |
SSD Mobilenet-V2
(300×300) | Object Detection | TensorFlow | 39 FPS | 1 FPS | 11 FPS | 48 FPS |
Inception V4
(299×299) | Classification | PyTorch | 11 FPS | DNR | DNR | 9 FPS |
Tiny YOLO V3
(416×416) | Object Detection | Darknet | 25 FPS | 0.5 FPS | DNR | DNR |
OpenPose
(256×256) | Pose Estimation | Caffe | 14 FPS | DNR | 5 FPS | DNR |
VGG-19 (224×224) | Classification | MXNet | 10 FPS | 0.5 FPS | 5 FPS | DNR |
Super Resolution (481×321) | Image Processing | PyTorch | 15 FPS | DNR | 0.6 FPS | DNR |
Unet
(1x512x512) | Segmentation | Caffe | 18 FPS | DNR | 5 FPS | DNR |
Jetson nano搭载四核Cortex-A57 MPCore 处理器,采用128 核 Maxwell™ GPU。支持JetPack SDK. 支持主流的AI框架和算法,例如TensorFlow, PyTorch, Caffe/Caffe2, Keras, MXNet等。
支持人脸识别,物体识别追踪,对象检测和定位等应用。
板载资源
Micro SD 卡卡槽: 可接入TF卡(16G以上),烧写系统镜像
40PIN GPIO扩展接口(兼容树莓派40PIN接口)
Micro USB接口:用于5V电源输入或者USB数据传输
千兆以太网口: 10/100/1000Base-T 自适应以太网端口
USB3.0接口:4个USB3.0接口
HDMI高清接口:用于外接HDMI屏幕
DisplayPort接口:用于外接DP屏幕
DC电源接口:用于外接5V电源(外径5.5, 内径2.1)
MIPS CSI 摄像头接口:兼容树莓派摄像头接口
性能
下面这一份表格是NVIDIA官方给出的性能对比表格,以供参考
DNR表示无法运行。
Model | Application | Framework | NVIDIA Jetson Nano | Raspberry Pi 3 | Raspberry Pi 3 + Intel Neural Compute Stick 2 | Google Edge TPU Dev Board |
ResNet-50
(224×224) | Classification | TensorFlow | 36 FPS | 1.4 FPS | 16 FPS | DNR |
MobileNet-v2
(300×300) | Classification | TensorFlow | 64 FPS | 2.5 FPS | 30 FPS | 130 FPS |
SSD ResNet-18 (960×544) | Object Detection | TensorFlow | 5 FPS | DNR | DNR | DNR |
SSD ResNet-18 (480×272) | Object Detection | TensorFlow | 16 FPS | DNR | DNR | DNR |
SSD ResNet-18 (300×300) | Object Detection | TensorFlow | 18 FPS | DNR | DNR | DNR |
SSD Mobilenet-V2 (960×544) | Object
Detection | TensorFlow | 8 FPS | DNR | 1.8 FPS | DNR |
SSD Mobilenet-V2 (480×272) | Object Detection | TensorFlow | 27 FPS | DNR | 7 FPS | DNR |
SSD Mobilenet-V2
(300×300) | Object Detection | TensorFlow | 39 FPS | 1 FPS | 11 FPS | 48 FPS |
Inception V4
(299×299) | Classification | PyTorch | 11 FPS | DNR | DNR | 9 FPS |
Tiny YOLO V3
(416×416) | Object Detection | Darknet | 25 FPS | 0.5 FPS | DNR | DNR |
OpenPose
(256×256) | Pose Estimation | Caffe | 14 FPS | DNR | 5 FPS | DNR |
VGG-19 (224×224) | Classification | MXNet | 10 FPS | 0.5 FPS | 5 FPS | DNR |
Super Resolution (481×321) | Image Processing | PyTorch | 15 FPS | DNR | 0.6 FPS | DNR |
Unet
(1x512x512) | Segmentation | Caffe | 18 FPS | DNR | 5 FPS | DNR |
举报