模拟技术学习
登录
直播中
王文
7年用户
178经验值
私信
关注
[问答]
如何计算MOSFET非线性电容
开启该帖子的消息推送
MOSFET
非线性
计算MOSFET非线性电容
回帖
(2)
孙喆
2021-1-8 14:03:42
最初为高压器件开发的超级结MOSFET,电荷平衡现在正向低压器件扩展。虽然这极大地降低了RDS(ON) 和结电容,但电荷平衡使后者非线性进一步加大。MOSFET有效储存电荷和能量减少,而且显著减少,但计算或比较不同MOSFET参数以获得最佳性能变得更加复杂。
MOSFET三个相关电容不能作为VDS的函数直接测量,其中有的需要在这个过程中短接或悬空。数据手册最终测量给出的三个值定义如下:
CiSS = CGS + CGD COSS = CDS + CDG CRSS = CGD
三者中,输入电容CGS非线性最小。它是栅极和源极间的电容,不会随VDS的大小发生很大变化。另一方面,CGD非线性最大,超级结器件前100V内的变化几乎达到三个数量级。当CiSS为VDS = 0时,也可以看到轻微变化。
图 1. 平面与超级结MOSFET电容对比
最近,了解COSS的性质及其对高频开关器件的影响引起关注。COSS储存的电荷和损耗成为配置高频AC-DC转换器的最大挑战。电容损耗与施加电压的平方成正比。参考文献 [1] 指出,同一电容额定电压550 V与12 V相比,储存的能量及损耗大出2100倍。重点降低RDS(ON),导通损耗显著下降,但COSS下降不成正比。例如,早期TO-220封装600 V MOSFET最低RDS(ON)为340m 。现在,超级结600 V器件的这一数值下降到65 m 。对于电容来说,对比不同技术RDS(ON)值相似器件更为重要。图1为平面器件SiHP17N60D与RDSON相似但略低的超级结MOSFET器件SiHP15N60E的电容对比。请注意,图中的值按对数坐标显示。
[2] - [9]通过几种方式解释COSS非线性的性质,并从新的角度分析对高频开关的影响。文献引入“小信号”和“大信号”电容一词进行模拟和分析。除了技术上不准确之外,这个新术语与行业规范没有任何区别。所谓大信号电容不过是MOSFET行业多年来规定的时间值COTR [2] 。
另一项分析提出用COSS隐性串联电阻,称为ROSS,来表示非线性电容所有原因不明的损耗[3]。这与明确电容充放电损耗完全由储存能量来定义,与任何串联电阻值无关的基本威廉希尔官方网站 理论相矛盾。在最近同行评审会议出版物[4]和[5]中,有人提出COSS储存的电荷和能量存在滞后现象,并且可能因电压采用的路径而有所不同。这种滞后意味着电荷守恒原理不适用功率MOSFET。
与其挑战物理学基本定律,不如重新检查并验证是否在具体环境下正确应用这种原理更有意义。调查令人更感兴趣的是解答以下问题-
如果两个电容并联,充电达到相同电压并储存完全相同的电荷,是否必然储存相同能量?
利用众所周知公式Q = CV和E = ½ CV2,答案应该是肯定的。遗憾的是,这个储存电荷和能量常用公式并非普遍适用,只在恒定电容的特定情况下才成立。更基本的关系将电容定义为电荷相对于电压的变化率,电压本身是单位电荷能量变化的测量值。换句话说,基本关系是
C = dQ/dV 和V = dE/dQ
这种电荷和能量的简单方程式假定电容恒定。对于非线性电容,必须分别利用随电压累积的电容和电荷求出电荷和能量。为了进一步说明,请考虑图2中的两个电容。电容CREF建立基准。另一电容CV从1.5 x CREF到0.5 x CREF呈线性变化。在100V处,它们具有相同电荷。这一点从两个电容的C x V部分可以很清楚地看出来,并且得到随电压累积电容值的证实。而储存的能量完全不同。如果储存的电荷随电压累积,则100V处CREF仅具有83.3%的储存能量。同时可以看出75V处CV储存电荷高10%,而能量与CREF相同。
图2. 恒定与可变电容对比
MOSFET制造商多年来一直采用这些累积,但不是将其指定为电荷和能量,而是将它们转换为两种不同的等效电容。
COTR – 充电到80 % VDSS时,储存电荷与COSS相同的固定电容
COER – 充电到80 % VDSS时,储存能量与COSS相同的固定电容
[2]从经验角度说明,80%额定电压的“有效”COSS与时间等效电容相同。请注意,COTR和COER本身是电压的函数;任何累积非线性函数产生另一个非线性函数。因此,数据手册将其定义为某种特定电压时的变化,如80%额定VDS或400 V。事实上,同一COSS存在两个不同“等效”值,一个表示储存电荷,另一个表示储存能量,这或多或少解答了这个问题。
最初为高压器件开发的超级结MOSFET,电荷平衡现在正向低压器件扩展。虽然这极大地降低了RDS(ON) 和结电容,但电荷平衡使后者非线性进一步加大。MOSFET有效储存电荷和能量减少,而且显著减少,但计算或比较不同MOSFET参数以获得最佳性能变得更加复杂。
MOSFET三个相关电容不能作为VDS的函数直接测量,其中有的需要在这个过程中短接或悬空。数据手册最终测量给出的三个值定义如下:
CiSS = CGS + CGD COSS = CDS + CDG CRSS = CGD
三者中,输入电容CGS非线性最小。它是栅极和源极间的电容,不会随VDS的大小发生很大变化。另一方面,CGD非线性最大,超级结器件前100V内的变化几乎达到三个数量级。当CiSS为VDS = 0时,也可以看到轻微变化。
图 1. 平面与超级结MOSFET电容对比
最近,了解COSS的性质及其对高频开关器件的影响引起关注。COSS储存的电荷和损耗成为配置高频AC-DC转换器的最大挑战。电容损耗与施加电压的平方成正比。参考文献 [1] 指出,同一电容额定电压550 V与12 V相比,储存的能量及损耗大出2100倍。重点降低RDS(ON),导通损耗显著下降,但COSS下降不成正比。例如,早期TO-220封装600 V MOSFET最低RDS(ON)为340m 。现在,超级结600 V器件的这一数值下降到65 m 。对于电容来说,对比不同技术RDS(ON)值相似器件更为重要。图1为平面器件SiHP17N60D与RDSON相似但略低的超级结MOSFET器件SiHP15N60E的电容对比。请注意,图中的值按对数坐标显示。
[2] - [9]通过几种方式解释COSS非线性的性质,并从新的角度分析对高频开关的影响。文献引入“小信号”和“大信号”电容一词进行模拟和分析。除了技术上不准确之外,这个新术语与行业规范没有任何区别。所谓大信号电容不过是MOSFET行业多年来规定的时间值COTR [2] 。
另一项分析提出用COSS隐性串联电阻,称为ROSS,来表示非线性电容所有原因不明的损耗[3]。这与明确电容充放电损耗完全由储存能量来定义,与任何串联电阻值无关的基本威廉希尔官方网站 理论相矛盾。在最近同行评审会议出版物[4]和[5]中,有人提出COSS储存的电荷和能量存在滞后现象,并且可能因电压采用的路径而有所不同。这种滞后意味着电荷守恒原理不适用功率MOSFET。
与其挑战物理学基本定律,不如重新检查并验证是否在具体环境下正确应用这种原理更有意义。调查令人更感兴趣的是解答以下问题-
如果两个电容并联,充电达到相同电压并储存完全相同的电荷,是否必然储存相同能量?
利用众所周知公式Q = CV和E = ½ CV2,答案应该是肯定的。遗憾的是,这个储存电荷和能量常用公式并非普遍适用,只在恒定电容的特定情况下才成立。更基本的关系将电容定义为电荷相对于电压的变化率,电压本身是单位电荷能量变化的测量值。换句话说,基本关系是
C = dQ/dV 和V = dE/dQ
这种电荷和能量的简单方程式假定电容恒定。对于非线性电容,必须分别利用随电压累积的电容和电荷求出电荷和能量。为了进一步说明,请考虑图2中的两个电容。电容CREF建立基准。另一电容CV从1.5 x CREF到0.5 x CREF呈线性变化。在100V处,它们具有相同电荷。这一点从两个电容的C x V部分可以很清楚地看出来,并且得到随电压累积电容值的证实。而储存的能量完全不同。如果储存的电荷随电压累积,则100V处CREF仅具有83.3%的储存能量。同时可以看出75V处CV储存电荷高10%,而能量与CREF相同。
图2. 恒定与可变电容对比
MOSFET制造商多年来一直采用这些累积,但不是将其指定为电荷和能量,而是将它们转换为两种不同的等效电容。
COTR – 充电到80 % VDSS时,储存电荷与COSS相同的固定电容
COER – 充电到80 % VDSS时,储存能量与COSS相同的固定电容
[2]从经验角度说明,80%额定电压的“有效”COSS与时间等效电容相同。请注意,COTR和COER本身是电压的函数;任何累积非线性函数产生另一个非线性函数。因此,数据手册将其定义为某种特定电压时的变化,如80%额定VDS或400 V。事实上,同一COSS存在两个不同“等效”值,一个表示储存电荷,另一个表示储存能量,这或多或少解答了这个问题。
举报
张永强
2021-1-8 14:03:54
COTR和COER不仅不同,而且其差异程度还可以用作非线性测量值。在我们的例子中,1.5:0.5电容范围内COTR与COER之间相差16.7%。同样,SiHP15N60E的COTR / COER 比接近3.6。其他超级结器件,电容范围可加宽到100:1以上,COTR / COER比可高于10。图3a显示SiHP15N60E储存电荷和能量之间的差。作为电压函数,这两个相关参数的变化率明显不同。在所有桥路配置中,尤其是ZVS模式下工作的桥路配置,需要考虑超大COTR以及所具有的储存总电荷。MOSFET输出电容放电与断电截然不同,应该基于COTR而不是COER设计计算。当然,COER和能量计算仍然需要计算开关损耗 [1]。
现在可以明显看出,任何电压条件下COSS绝对值已经没有意义或不需要。与威廉希尔官方网站 相互作用的不是电容本身,而是定义行为的储存电荷和能量。如果观察任何涉及COSS的设计计算会发现,这种计算是某种情况下通过乘以相关电压因子换算储存电荷或能量。除COTR和COER之外,包括威世在内,现在MOSFET制造商的高压器件数据手册提供完整的EOSS曲线,如图3b所示。通常还规定100V MOSFET器件50%处的QOSS,以帮助48V ZVS桥进行死区分析。
图3a. COSS 储存电荷和能量与电压的关系
图3b. 电容与储存能量与电压的关系
类似的考虑适用于栅漏电容CRSS,但其值远低于COSS。根据定义,这个值已经包含在前面提到的COSS测量结果中。事实上,CRSS非线性本质很早以前就已确定为一个问题并在文献中做了说明。栅极电荷曲线中的QGD分量只不过是导通或关闭期间,栅极需要注入或清除CRSS储存的总电荷。请注意,栅极电荷曲线分段线性部分与任何电容的非线性无关。MOSFET导通过程涉及为两个关闭状态下不同电压的电容器充电。
在处理MOSFET时,需要记住它们的电容不包括介质隔开的两个电极。它们本质上是瞬态的,主要在器件高dV/dt条件下开关间隔期间内发挥作用。等效威廉希尔官方网站 中所示电容表示半导体材料与其电流之间有源电场的相互作用。只有关系是线性的,这种表示才有意义。今天的MOSFET表现出极端非线性,可以毫不夸张地说不再有COSS或CRSS之类的因素。设计师不必试图线性化并以某种方式矫正曲线,而专注于直接与储存电荷和能量相关的基础工作。
COTR和COER不仅不同,而且其差异程度还可以用作非线性测量值。在我们的例子中,1.5:0.5电容范围内COTR与COER之间相差16.7%。同样,SiHP15N60E的COTR / COER 比接近3.6。其他超级结器件,电容范围可加宽到100:1以上,COTR / COER比可高于10。图3a显示SiHP15N60E储存电荷和能量之间的差。作为电压函数,这两个相关参数的变化率明显不同。在所有桥路配置中,尤其是ZVS模式下工作的桥路配置,需要考虑超大COTR以及所具有的储存总电荷。MOSFET输出电容放电与断电截然不同,应该基于COTR而不是COER设计计算。当然,COER和能量计算仍然需要计算开关损耗 [1]。
现在可以明显看出,任何电压条件下COSS绝对值已经没有意义或不需要。与威廉希尔官方网站 相互作用的不是电容本身,而是定义行为的储存电荷和能量。如果观察任何涉及COSS的设计计算会发现,这种计算是某种情况下通过乘以相关电压因子换算储存电荷或能量。除COTR和COER之外,包括威世在内,现在MOSFET制造商的高压器件数据手册提供完整的EOSS曲线,如图3b所示。通常还规定100V MOSFET器件50%处的QOSS,以帮助48V ZVS桥进行死区分析。
图3a. COSS 储存电荷和能量与电压的关系
图3b. 电容与储存能量与电压的关系
类似的考虑适用于栅漏电容CRSS,但其值远低于COSS。根据定义,这个值已经包含在前面提到的COSS测量结果中。事实上,CRSS非线性本质很早以前就已确定为一个问题并在文献中做了说明。栅极电荷曲线中的QGD分量只不过是导通或关闭期间,栅极需要注入或清除CRSS储存的总电荷。请注意,栅极电荷曲线分段线性部分与任何电容的非线性无关。MOSFET导通过程涉及为两个关闭状态下不同电压的电容器充电。
在处理MOSFET时,需要记住它们的电容不包括介质隔开的两个电极。它们本质上是瞬态的,主要在器件高dV/dt条件下开关间隔期间内发挥作用。等效威廉希尔官方网站 中所示电容表示半导体材料与其电流之间有源电场的相互作用。只有关系是线性的,这种表示才有意义。今天的MOSFET表现出极端非线性,可以毫不夸张地说不再有COSS或CRSS之类的因素。设计师不必试图线性化并以某种方式矫正曲线,而专注于直接与储存电荷和能量相关的基础工作。
举报
更多回帖
rotate(-90deg);
回复
相关问答
MOSFET
非线性
如何判断某个元件是
线性
还是
非线性
?
2018-11-13
7203
求教
非线性
电容
参数设置
2015-02-02
4147
什么是
MOSFET
驱动器?如何
计算
MOSFET
的功耗?
2021-04-12
3502
什么是电阻
非线性
度?
2019-07-29
2388
PGA309一旦校准
非线性
就不准了,为什么?
2024-08-15
245
如何
计算
电机转子结构的接触
非线性
?
2021-03-11
1430
Multisim 里如何构造
非线性
电感
2013-11-20
4380
非线性
效应测量
2019-06-03
1948
非线性
方程的求解
2013-03-11
3492
请问ADE7953的IRMSA和VRMS寄存器输出值是
线性
的还是
非线性
的?
2018-07-27
1713
发帖
登录/注册
20万+
工程师都在用,
免费
PCB检查工具
无需安装、支持浏览器和手机在线查看、实时共享
查看
点击登录
登录更多精彩功能!
英国威廉希尔公司网站
william hill官网 版块
小组
免费开发板试用
ebook
直播
搜索
登录
×
20
完善资料,
赚取积分