电力电子技术
直播中

郑盼

7年用户 213经验值
私信 关注
[问答]

为什么在骨干网,长距传输上选择了相干光通信?

为什么在骨干网,长距传输上选择了相干光通信
了解相干光通信之前所需的知识储备
QPSK,QAM等复杂调制格式具体实现的方式


回帖(8)

于佳

2021-2-4 11:38:03
  在光通信行业里,我们经常听到400G和100G传输,而相干光通信和PAM4传输技术在数据中心及网络基础设施中是当下实现这两种速率的主要技术方向。按照这两种技术各自的优势,它们分别在线路侧骨干网传输和客户侧模块发挥着各自的优势。PAM4传输技术之前小K普及过很多次了,那么相干又怎么理解呢?
  从传输技术来看,有三个维度可以用来增加传输的信息量:
  更高符号速率 10 GBaud/s → 25 GBaud/s → 56G Baud/s……;
  更多并行通道数 波分复用或者多路光纤1x → 4x → 8x → 32x……;
  高阶复杂调制 如 PAM-4,QPSK,16QAM,64QAM……
  PAM4可以看作是一种高阶幅度调制,在相同的符号速率下可以传输NRZ信号两倍的比特位数,而相干光通信则利用光波的更多维度,偏振,幅度,相位和频率来承载更多的调制信息,从而扩充了传输容量。
  
  为什么在骨干网长距传输上选择了相干光通信?
  首先采用复杂调制的相干光通信节省了光带宽资源,提升了光纤传输效率,是进一步提高传输带宽的绝佳选择。传统概念上光纤的带宽是不受限制的,然而随着速率的提升和波分复用技术的实施,我们还是遇到了瓶颈。
  
  左图 可以看到随着信号速率的提高,光信号的频谱也在变宽。当符号率提升至40 GBaud甚至100 GBaud时,OOK(把一个幅度取为0,另一个幅度为非0,就是OOK,On-Off Keying,该调制方式的实现简单),信号占用的带宽变得大于50-GHz ITU信道的带宽。从图中可以看出,频谱加宽的信道开始与它们的相邻信道重叠,导致串扰的出现。
  右图 给出了使用多种不同技术的组合如何提高频谱效率的想法。 举例来说,与NRZ-OOK调制格式相比,使用QPSK可以将符号利用率提升两倍。这样我们就使用一半的符号率传输同样速率的数据,占用的光谱带宽也减少了一半。然后通过上面我们说过的偏振复用PDM可以在同一个波长传递两个并行偏振通道,相当于提升两倍频谱效率。通过QPSK高阶调制和PDM偏振复用技术,我们将单波长通道的光信号频谱占用减小到了原来的四分之一。 最后再利用脉冲整形滤波器进一步缩小占用频谱之后,可以在50GHz带宽的信道中传输112Gbps的数据。
  光相干接收机的另一个优点是数字信号处理功能。数字相干接收机的解调过程是完全线性的;所有传输光信号的复杂幅度信息包括偏振态在检测后被保存分析,因此可以进行各种信号补偿处理,比如做色度色散补偿和偏振模式色散补偿。这就使得长距离传输的链路设计变得更加简单,因为传统的非相干光通信是要通过光路补偿器件来进行色散补偿等工作的。(传统传输链路的色散问题,即光信号各个组成成分在光纤中传输时,抵达时间不一样。)
  
  相干接收机比普通的接收机灵敏度高大约20dB,因此在传输系统中无中继的距离就会越长。得益于接收机的高灵敏度,我们可以减少在长距离传输光路上进行放大的次数。
  基于以上原因,相干光通信可以减少长距离传输的光纤架设成本,简化光路放大和补偿设计,因此在长距离传输网上成为了主要的应用技术。
举报

马念

2021-2-4 11:38:19
  了解相干光通信之前所需的知识储备
  接下来我们要讲的是相干光发射的复杂调制技术,但要讲明白复杂调制的原理,我们还得花点时间回顾以下内容作为基石:
  --传统强度调制
  --I/Q调制
  --星座图
  『强度调制』根据其原理不同,一般可以简单分为直接调制(DML)和外调制(EML)两种。
  直接调制DML
  Direct Modulation Laser
  直接调制原理最简单, 信号直接调制光源的输出光强,激光器出光功率与驱动电流成正比。
  但是直接调制最大的问题就是频率啁啾,使其不适用于更高频的调制。
  调制1的时候,输入到激光器的电流大,激光器的输出振幅大,能量大,亮
  调制0的时候,输入到激光器的电流小,激光器的输出振幅小,能量小,暗
  
  用于直接调制的激光器,我们就称为DML(Direct Modulation Laser)激光器。
举报

张勇

2021-2-4 11:38:32
  外调制EML External Modulation Laser
  用于外调制的激光器,我们就称为EML(External Modulation Laser)激光器。外调制常用的方式有两种,一种是EA电吸收,将调制器与激光器集成到一起,激光器的光送到EA调制器,EA调制器等同于一个门,门开的大小由电压控制。因此可以通过改变电场大小,调整对光信号的吸收率。
  外调制还有一种就是大名鼎鼎的 MZ Mach-Zehnder马赫-曾德尔调制器。在MZ调制器中,输入的激光被分成两路。通过改变施加在MZ调制器上的偏置电压,两路光之间的相位差发生变化,再在调制器输出端叠加在一起。
  物理学上著名的双缝干涉实验证明了光有波的特性↓↓↓
  
  MZ正是利用了光波的这一特性,完成了信号的调制:
  相差是0度,那么相加以后,振幅就是1+1=2
  相差是90度,那么相加以后,振幅就是
  相差是180度,那么相加以后,振幅就是1-1=0
  由上面的描述,我们知道,相差变化可以带来振幅(能量)的变化,从而实现光的强度调制。
举报

陈霞

2021-2-4 11:38:46
  什么是『I/Q调制』?为什么要用I/Q调制?
  光波当然不会仅仅由振幅来定义,通过下面具有Ex和Ey两个偏振分量的电磁波电场的经典数学公式描述可以知道有很多光波特征参数都可以用来对信息进行编码呢,比如:
  在偏振复用中,这些正交分量可以作为两个不同的通道传递独立信号;
  在波分复用中应用不同的频率ω可以在不同渠道独立数据传输这些频率/波长;
  对于复杂的调制方案, 就可以用上振幅E, 相位***等参数共同调制信号---这就是基本的I/Q调制
  这样是不是感觉调制方案有了很多种可能性?事实上,这也的确是高阶复杂调制的理论根据。
  
  I/Q调制在下图用极坐标描述,这里,I为in-phase同相或实部,Q为quadrature正交相位或虚部,如图(6)所示蓝色矢量端点的位置对应一个点 (也称为“星座点”)在这个图中(这被称为“星座图”),这个点其实就是振幅E和相位***的一对组合。
  
  I/Q调制听起来有个蛮高大上的名字,那它是不是就比前面讲过的OOK调制Niubility呢?先让下面哥仨挨个来个自我介绍:
  
  由此可知,调制幅度和/或相位不意味着相对OOK调制具有更高的传输效率。
  而相干传输技术于传统上用的NRZ,RZ和OOK信号相比,要提高传输效率,就要使用多个符号表示多个位数,那么用一个MZM调制器只能实现BPSK调制,那么要实现QPSK,则要有两个正交的MZM调制器。
  这意味着在Q路有 90° 的相移, 表现在时域上的波形为图(8)所示,一共有4个符号,每一个时钟周期传输2比特:
  
  * A 代表 00--- → a sin(ωt+45)
  * B 代表 01---- → a sin(ωt+225)
  * C 代表 11---- → asin(ωt+315)
  * D 代表 10---- → a sin(ωt+135)
  还要说明的是在复杂编码情况下,现在实际上有两种不同的速度需要被澄清:
  首先 是以每秒比特数测量的比特率,也称为“传输速率”。
  其次,符号率S量化以波特为单位测量的每秒传输的符号数。 因此,它通常被称为“波特率”。 利用比特/符号的编码效率e, 符号率计算如下:
  
  图(9)以QPSK为例进一步解释这个公式。对于100-Gbps QPSK信号,这意味着它的传输速率是100Gbps,而它的符号率S =(100Gbps)/(2比特/符号)= 50Gbaud,此信号占用的光通信带宽约为25GHz。
  
举报

更多回帖

发帖
×
20
完善资料,
赚取积分