简化版磁场定向电机控制算法适用于经济实惠的嵌入式控制器,这种算法的出现是无刷直流 (BLDC) 电机取得成功的一个重要因素。在越来越多的应用场景下,无刷直流电机都比普通的有刷直流电机和线路供电交流电机更受欢迎。无刷直流电机的应用非常广泛,包括工业执行器和机床、机器人、计算机外设、医疗设备(如呼吸机和分析仪)、汽车驱动器、鼓风机和泵以及家用电器等等,几乎无处不在。
无刷直流电机的优势已经不仅仅在于提高可靠性,以及降低与碳刷换相有关的噪音和电气干扰。虽然有刷电机主要是由电压控制,但是无刷直流电机对电子换相的依赖让人们有机会以更高精度管理转子位置、速度和加速度以及电机的输出扭矩、效率和其他参数,从而能够满足特定的应用要求。
无刷直流电机控制策略
要控制无刷直流电机,首先要知道转子位置。控制器利用此信息来协调与磁场相关的转子线圈的供电,以确保电机提供所需的响应,包括保持速度、加速、减速、改变方向、减小或增加扭矩、紧急停止或其他响应,具体取决于应用和操作条件。
转子位置可直接使用位于转子轴上的传感器或编码器进行检测。编码器类型丰富,大致分为相对位置和绝对位置两种。同时还有各种类型的传感技术,如磁线圈旋转变压器、霍尔效应,光学或电容传感器。根据分辨率、耐久性或成本等要求,这些类型的任何一种技术都可能适用于给定的用例。
无传感器控制是一种可行的替代方法,它利用目前微控制器的计算能力,通过测量每个转子绕组中的反电动势 (EMF) 来计算转子位置。无需编码器可以节省材料成本,简化装配,并提高可靠性。磁场定向控制 (FOC) 将转子电流分解为直轴 (d) 分量和交轴 (q) 分量,因为直流值变化缓慢,可以简化控制难题,结合这种控制方法,无需传感器即可检测转子位置。这种检测方式非常适合成本和可靠性比最终精度更重要的应用,比如家用电器和汽车车窗、后视镜或座椅控制等等。
另一方面,如果生成的反电动势很小,无传感器控制在转子速度较低时效果较差。
简化版磁场定向电机控制算法适用于经济实惠的嵌入式控制器,这种算法的出现是无刷直流 (BLDC) 电机取得成功的一个重要因素。在越来越多的应用场景下,无刷直流电机都比普通的有刷直流电机和线路供电交流电机更受欢迎。无刷直流电机的应用非常广泛,包括工业执行器和机床、机器人、计算机外设、医疗设备(如呼吸机和分析仪)、汽车驱动器、鼓风机和泵以及家用电器等等,几乎无处不在。
无刷直流电机的优势已经不仅仅在于提高可靠性,以及降低与碳刷换相有关的噪音和电气干扰。虽然有刷电机主要是由电压控制,但是无刷直流电机对电子换相的依赖让人们有机会以更高精度管理转子位置、速度和加速度以及电机的输出扭矩、效率和其他参数,从而能够满足特定的应用要求。
无刷直流电机控制策略
要控制无刷直流电机,首先要知道转子位置。控制器利用此信息来协调与磁场相关的转子线圈的供电,以确保电机提供所需的响应,包括保持速度、加速、减速、改变方向、减小或增加扭矩、紧急停止或其他响应,具体取决于应用和操作条件。
转子位置可直接使用位于转子轴上的传感器或编码器进行检测。编码器类型丰富,大致分为相对位置和绝对位置两种。同时还有各种类型的传感技术,如磁线圈旋转变压器、霍尔效应,光学或电容传感器。根据分辨率、耐久性或成本等要求,这些类型的任何一种技术都可能适用于给定的用例。
无传感器控制是一种可行的替代方法,它利用目前微控制器的计算能力,通过测量每个转子绕组中的反电动势 (EMF) 来计算转子位置。无需编码器可以节省材料成本,简化装配,并提高可靠性。磁场定向控制 (FOC) 将转子电流分解为直轴 (d) 分量和交轴 (q) 分量,因为直流值变化缓慢,可以简化控制难题,结合这种控制方法,无需传感器即可检测转子位置。这种检测方式非常适合成本和可靠性比最终精度更重要的应用,比如家用电器和汽车车窗、后视镜或座椅控制等等。
另一方面,如果生成的反电动势很小,无传感器控制在转子速度较低时效果较差。
举报