完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
1.roots求解多项式的根 r=roots(c) 注意:c为一维向量,者返回指定多项式的所有根(包括复根),poly和roots是互为反运算,还有就是roots只能求解多项式的解 还有下面几个函数poly2sym、sym2poly、eig >>syms x >>y=x^5+3*x^3+3; >>c=sym2poly(y);%求解多项式系数 >>r=roots(c); >>poly(r) 2.residue求留数 [r, p, k] = residue(b,a) >>b = [ 5 3 -2 7] >>a = [-4 0 8 3] >>[r, p, k] = residue(b,a) 3.solve符号解方程(组)——使用最多的 g = solve(eq1,eq2,...,eqn,var1,var2,...,varn) 注意:eqn和varn可以是符号表达式,也可以是字符串表达式,但是使用符号表达式时不能有“=”号,假如说varn没有给出,使用findsym函数找出默认的求解变量。返回的g是一个结构体,以varn为字段。由于符号求解的局限性,好多情况下可能得到空矩阵,此时只能用数值解法 解方程A=solve('a*x^2 + b*x + c') 解方程组B=solve('a*u^2 + v^2', 'u - v = 1', 'a^2 - 5*a + 6') 4.fzero数值求零点 [x,fval,exitflag,output]=fzero(fun,x0,options,p1,p2...) fun是目标函数,可以是句柄(@)、inline函数或M文件名 x0是初值,可以是标量也可以是长度为2的向量,前者给定一个位置,后者是给定一个范围 options是优化参数,通过optimset设置,optimget获取,一般使用默认的就可以了,具体参照帮助 p1,p2...为需要传递的其它参数 假如说(x/1446)^2+p/504.1+(t/330.9)*(log(1-x/1446)+(1-1/5.3)*x/1446)=0的根,其中p,t是已知参数,但是每次都改变 那么目标函数如下三种书写格式,效果完全等效。注意参数列表中,未知数一定放第一位,其他参数放后面 (1)objfun=@(x,p,t)(x/1446).^2+p/504.1+(t/330.9).*(log(1-x/1446)+(1-1/5.3).*x/1446); (2)objfun=inline('(x/1446).^2+p/504.1+(t/330.9).*(log(1-x/1446)+(1-1/5.3).*x/1446)','x','p','t') 此时的调用格式如下 fzero(objfun,x0,options,p,t)%如果options使用的默认的话,那直接使用[],p和t就是我们需要传递的参数 fzero(@(x)objfun(x,p,t),x0,options)%这种格式与上面的等效 区别就是前者,将参数p和t作为fzero的参数进行传递,而后者是将p和t作为objfun的参数进行传递,没有本质区别 (3)function f=objfun(x,p,t)%以M文件格式书写目标函数 f=(x/1446).^2+p/504.1+(t/330.9).*(log(1-x/1446)+(1-1/5.3).*x/1446); 此时有三种调用格式 fzero(@objfun,x0,options,p,t) fzero('objfun',x0,options,p,t) fzero(@(x)objfun(x,p,t),x0,options) 注意:fzero只能求解单变量的方程,没法求解复数、多变量以及方程组等。在搜索过程中出现inf,nan,复数将会终止计算,也就是说不能求解复数解,并且每次子返回一个解 5.fsolve数值解方程(组)——使用最多的数值解法 [x,fval,exitflag,output,jacobian]=fsolve(fun,x0,options,p1,p2...) fsolve的参数意义大部分与fzero相同,只是优化参数更多了,使用更灵活另外一定注意x0的长度必须与变量的个数相等。它与fzero的区别是,首先当然算法不同,另外fsolve的功能强大多很多,它可以直接方便的求解多变量方程组,线性和非线性,超静定和静不定方程,还可求解复数方程 fun同样可以是句柄、inline函数或M文件,但是一般M文件比较多,这是由于fsolve是解方程组的,目标函数一般比较烦,直接写比较困难 比如解方程组x1+x2=8 x1-2*x2-2*p=0(当然可以求解非线性的) 目标函数同样有三种书写格式 (1)objfun=@(x,p)[x(1)+x(2)-8;x(1)-3*x(2)+2*p]; (2)objfun=inline('[x(1)+x(2)-8;x(1)-3*x(2)+2*p]','x','p') 此时的调用格式有 fsolve(objfun,x0,options,p) fsolve(@(x)objfun(x,p),x0,options) (3)function f=objfun(x,p) f(1)=x(1)+x(2)-8; f(2)=x(1)-3*x(2)+2*p; 当然你也可以直接写成,两者的效果是一样的 f=[x(1)+x(2)-8; x(1)-3*x(2)+2*p]; 此时的调用格式有 fsolve(@objfun,x0,options,p) fsolve('objfun',x0,options,p) fsolve(@(x)fun(x,p),x0,options) |
|
|
|
请问simulink的s-function模块如何添加多输入输出接口
1776 浏览 2 评论
1492 浏览 3 评论
使用simulink进行三相短路故障分析时,各参数应该如何设置
2068 浏览 1 评论
想请教一下图中是simulink的什么模块,需要这种三段斜率函数模块但没找到在哪
2128 浏览 1 评论
3040 浏览 1 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-14 03:31 , Processed in 0.449082 second(s), Total 63, Slave 46 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (威廉希尔官方网站 图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号