A、ROM(只读存储器):一般用于存放固定的程序或数据表格等,数据在掉电后仍然会保留下来。
B、RAM(随机存储器):用于暂存程序和数据、中间计算结果,或用作堆栈用等,数据在掉电后就会丢失。
A、TTL 电平:正逻辑,5V 为逻辑正,0V 为逻辑负,例如单片机的输出。
B、RS232 电平:负逻辑,-12V 为逻辑正,+12V 为逻辑负,例如 PC 的输出。
注:因此在单片机和 PC 进行通讯的时候需要一个 MAX232 芯片进行电平转换。
A、堆栈特性:后进先出(LIFO)
B、堆栈指针:用于指示栈顶的位置(地址),当发生压栈或者出栈操作时,导致栈顶位置变化时,堆栈指针会随之变化。
C、堆栈操作:压栈操作(PUSH)和出栈操作(POP)。
D、堆栈类型:“向上生长”型堆栈,每次压栈时堆栈指针加 1;“向下生长”型堆栈,每次压栈堆栈时指针减 1。
E、堆栈应用:调用子程序、响应中断时,堆栈用于保护现场;还可以用作临时数据缓冲区来使用。
F、使用注意:堆栈溢出问题,压栈和出栈的匹配问题。
A、计时、定时或延时控制;
B、脉冲技术;
C、测量脉冲宽度或频率(捕获功能)
A、中断嵌套:当一个低级中断尚未执行完毕,又发生了一个高级优先级的中断,系统转而执行高级中断服务程序,
待处理完高级中断后再回过头来执行低级中断服务程序。
B、中断响应时间是指从发出中断请求到进入中断处理所用的时间;中断处理时间是指中断处理开始到中断处理结
束的时间。
C、中断响应过程:
a、保护现场:将当前地址、累加器 ACC、状态寄存器保存到堆栈中。
b、切换 PC 指针:根据不同的中断源所产生的中断,切换到相应的入口地址。
c、执行中断服务处理程序。
d、恢复现场:将保存在堆栈中的主程序地址、累加器 ACC、状态寄存器恢复。
e、中断返回:从中断处返回到主程序,继续执行。
D、中断入口地址:单片机为每个中断源分配了不同的中断入口地址,也称为中断向量。
A、复位发生时的动作:
a、PC 指针从起始位置开始执行(大多数单片机都时从 0x0000 处开始执行)。
b、I/O 端口设置成缺省状态(高阻态、或者输出低电平)。
c、部分专用控制寄存器 SFR 恢复到缺省状态。
d、普通 RAM 不变(如果时上电复位,则是随即数)。
B、两种不同的复位启动方式:
a、冷启动:也叫上电复位,指在断电状态下给系统加电,让系统开始正常运行。
b、热启动:在不断电的状态下,给单片机复位引进一个复位信号,让系统重新开始。
C、两种类型的复位威廉希尔官方网站 :高电平复位和低电平复位。
D 注意事项:
a、 注意复位信号的电平状态及持续时间必须满足系统要求。
b、 注意避免复位信号抖动。
A、振荡周期:振荡源的振荡节拍。7、ARM 体系结构的基本概念
B、机器周期:单片机完成一个基本操作需要的振荡周期(节拍)。
C、指令周期:执行一条指令需要几个机器周期。不同的指令需要的机器周期数不同。
A、T 模块:表示 16 位 Thumb,可以在兼顾性能的同时减少代码尺寸。
B、D 模块:表示 Debug,内核中放置了用于调试的结构,通常为一个边界扫描链 JTAG。
C、M 模块:表示 8 位乘法器。
D、I 模块:表示 EmbeddedICE Logic,用于实时断点观测及变量观测的逻辑威廉希尔官方网站 部分。
A、用户模式(User):正常程序执行模式,用于应用程序。
D、快速中断模式(FIQ):快速中断处理,用于高速数据传输和通道处理。
C、外部中断模式(IRQ):用于通用的中断处理。
D、管理模式(SVE):供操作系统使用的一种保护模式。
E、数据访问中止模式(Abort):用于虚拟存储及存储保护。
F、未定义指令中止模式(Undefined):当未定义指令执行时进入该模式。
G、系统模式(System):用于运行特权级的操作系统任务。
除了用户模式之外的其他 6 种处理器模式称为特权模式,在这些模式下,程序可以访问所有的系统资源,也可以任意地进行处理器模式切换,其中,除了系统模式外,其他的 5 种特权模式又称为异常模式。
处理器模式可以通过软件控制进行切换,也可以通过外部中断或异常处理过程进行切换。大多数的用户程序运行在用户模式下,这时,应用程序不能访问一些受操作系统保护的系统资源,应用程序也不能直接进行处理器模式切换。
当需要进行处理器模式切换时,应用程序可以产生异常处理,在异常处理中进行处理器模式的切换。这种体系结构可以使操作系统控制整个系统的资源。
当应用程序发生异常中断时,处理器进入相应的异常模式。在每一种异常模式种都有一组寄存器,供相应的异常处理程序使用,这样就可以保证进入异常模式时,用户模式下的寄存器不被破坏。
系统模式并不是通过异常过程进入的,它和用户模式具有完全一样的寄存器,但是系统模式属于特权模式,可以访问所有的系统资源,也可以直接进行处理器模式切换,它主要供操作系统任务使用。
a、未备份寄存器 R0~R7:在所有的处理器模式下,未备份寄存器都是指向同一个物理寄存器。
b、备份寄存器 R8~R14: 对于 R8~R12 来说,每个寄存器对于 2 个不同的物理寄存器,它们每次所访问的物理寄存器都与当前的处理器运行模式有关。 对于 R13、R14 来说,每个寄存器对于 6 个不同的物理寄存器,其中一个是用户模式和系统模式共用。 R13 在 ARM 指令种常用作堆栈指针。由于处理器的每种运行模式都有自己独立的物理寄存器 R13,所有在用户应用程序的初始化部分,一般要初始化每种模式下的 R13,使其指向该运行模式的栈空间。 R14 又称为连接寄存器(LR),在 ARM 体系种具有下面两种特殊作用:在通过 BL 或 BLX 指令调用子程序时,存放当前子程序的返回地址;在异常中断发生时,存放异常模式将要返回的地址。
c、程序计数器 R15(PC):由于 ARM 采用了流水线机制,在三级流水线中,当正确读取了 PC 的值时,该值为当前指令地址值加 8 个字节。也就是说,PC 指向当前指令的下两条指令的地址。在 ARM 指令状态下,PC 的 0 和 1 位是 0,在 Thumb 指令状态下,PC 的 0 位是 0。
B、程序状态寄存器
a、ARM 体系结构包含 1 个当前程序状态寄存器(CPSR)和 5 个备份的程序状态寄存(SPSR),使用 MSR 和 MRS 指令来设置和读取这些寄存器。
b、当前程序状态寄存器 CPSR:保存当前处理器状态的信息,可以在任何处理器模式下被访问。
c、备份程序状态寄存器 SPSR:每一种异常处理器模式下都有一个专用的物理状态寄存器。当特定的异常中断发生时,这个寄存器用于存放当前程序状态寄存器的内容,在异常中断程序退出时,可以用 SPSR 中保存的值来恢复 CPSR。
d、由于用户模式和系统模式不属于异常模式,它们没有 SPSR,当在这两种模式下访问 SPSR 时,结果是未知的。
A、 立即寻址:操作数本身就在指令中给出,只要取出指令也就取到了操作数。ADD R0, R0, #1
B、 寄存器寻址:利用寄存器中的数值作为操作数。ADD R0, R1, R2
C、 寄存器间接寻址:以寄存器中的值作为操作数地址,而操作数本身存放在存储器中。ADD R0, R1, [R2] LDR R0, [R1] STR R0, [R1]
D、基址变址寻址:将寄存器(该寄存器一般称作基址寄存器)的内容与指令中给出的地址偏移量相加,从而得到一个操作数的有效地址。LDR R0, [R1, #4] LDR R0, [R1, #4]! LDR R0, [R1], #4 LDR R0, [R1, R2]!
E、 多寄存器寻址:一条指令可以完成多个寄存器值的传送。LDMIA R0, {R1, R2, R3}
F、 相对寻址:以程序计数器 PC 的当前值作为基地址,指令中的地址标号作为偏移量,两者相加之后得到操作数的有效地址。BL NEXT ;跳转到子程序 NEXT 处执行 …...NEXT : MOV PC, LR ;从子程序返回
G、堆栈寻址:支持 4 种类型的堆栈工作方式:
a、 满递增堆栈:堆栈指针指向最后压入的数据,且由低地址向高地址生长。
b、 满递减堆栈:堆栈指针指向最后压入的数据,且由高地址向低地址生长。
c、 空递增堆栈:堆栈指针指向下一个将要放入数据的空位置,且由低地址向高地址生长。
d、 空递减堆栈:堆栈指针指向下一个将要放入数据的空位置,且由高地址向低地址生长。
A、大端模式:数据的高字节存储在低地址中,低字节存储在高地址中。
B、小端模式:数据的低字节存储在低地址中,高字节存储在高地址中。
不同的中断处于不同的处理模式,具有不同的优先级,而且每个中断都有固定的中断地址入口。当一个中断发生是,相应的 R14(LR)存储中断返回地址,SPSR 存储当前程序状态寄存器 CPSR 的值。B、由于 ARM 内核支持流水线工作
LR 寄存器存储的地址可能是发生中断后面指令的地址,所以不同的中断处理完成后,必须将 LR 寄存器值经过处理后再写入 P15(PC)寄存器。C、ARM 异常的具体含义:
a、复位:当处理器的复位电平有效时,产生复位异常,程序跳转到异常复位异常处理程序处执行。D、ARM 处理器对异常中断的响应过程
b、未定义的指令:当 ARM 处理器或协处理器遇到不能处理的指令时,产生未定义指令异常。可以使用该异常机制进行软件仿真。
c、软件中断:该异常由执行 SWI 指令产生,可用于用户模式下的程序调用特权操作指令。可使用该异常机制实现操作系统调用功能。
d、指令预取中止:如果处理器预取指令的地址不存在或该地址不允许当前指令访问,存储器向处理器发出中止信号,但当预取的指令被执行时,才会产生指令预取中止异常。
e、数据访问中止:如果处理器数据访问指令的目标地址不存在,或者该地址不允许当前指令访问,处理器产生数据访问中止异常。
f、外部中断请求:当 ARM 外部中断请求管脚有效,而且 CPSR 中的 I 位为 0 时,产生 IRQ 异常。系统的外设可以通过该异常请求中断服务。
g、快速中断请求:当 ARM 快速中断请求管脚有效,而且 CPSR 的 F 位为 0 时,产生 FIQ 异常。
a、将下一条指令的地址存入相应的连接寄存器 LR 中。E、ARM 处理器从异常中断处理程序中返回
b、将 CPSR 复制到相应的 SPSR 中。
c、根据异常的类型,强制设置 CPSR 的运行模式位。
d、强制 PC 从相关的异常向量地址取下一条指令执行,从而跳转到相应的异常处理程序处。
a、恢复中断的程序的处理器状态,将 SPSR 复制到 CPSR 中。F、复位异常中断处理程序不需要返回。
b、若在进入异常处理时设置了中断禁止位,要在此清除。
c、将连接寄存器 LR 的值减去相应的偏移量后送到 PC。
更多回帖