ARM技术william hill官网
直播中

Tronlong创龙科技

4年用户 743经验值
擅长:嵌入式技术 存储技术 处理器/DSP EDA/IC设计 MEMS/传感技术
私信 关注

嵌入式工程师进阶,基于AM64x开发板的IPC多核开发案例分享

本帖最后由 Tronlong创龙科技 于 2023-3-2 10:18 编辑

前言
本文档主要说明AM64x基于IPC的多核开发方法。默认使用AM6442进行测试演示,AM6412测试步骤与之类似。

适用开发环境如下:
Windows开发环境:Windows 7 64bit、Windows 10 64bit
虚拟机:VMware15.5.5
Linux开发环境:Ubuntu 18.04.4 64bit
Linux Processor SDK:ti-processor-sdk-linux-rt-am64xx-evm-08.01.00.39
U-Boot:U-Boot-2021.01
CCS版本:CCS11.2.0
MCU+ SDK:mcu_plus_sdk_am64x_08_03_00_18
SysConfig:sysconfig-1.12.1_2446
GCC AARCH64 Compiler:gcc-arm-9.2-2019.12-mingw-w64-i686-aarch64-none-elf

本文测试板卡为创龙科技SOM-TL64x核心板,它是一款基于TI Sitara系列AM64x双核ARM Cortex-A53 + 单/四核Cortex-R5F + 单核Cortex-M4F设计的多核工业级核心板,通过工业级B2B连接器引出5x TSN Ethernet、9x UART、2x CAN-FD、GPMC、PCIe/USB 3.1等接口。核心板经过专业的PCB Layout和高低温测试验证,稳定可靠,可满足各种工业应用环境。

用户使用核心板进行二次开发时,仅需专注上层运用,降低了开发难度和时间成本,可快速进行产品方案评估与技术预研。
AM64x是SOC多核处理器,一般情况下,Cortex-A53核心运行Linux系统,Cortex-R5F/Cortex-M4F核心运行Baremetal(裸机)或RTOS(FreeRTOS等)。
ARM基于Linux的remoteproc/rpmsg驱动程序,可以实现Linux内核与运行RTOS的从处理器上的IPC驱动程序通信,具体框图如下图所示。

图 1


IPC多核开发案例位于“4-软件资料DemoRTOS-demos”目录下,案例project目录存放工程源码,bin目录存放可执行程序文件。
表 1
案例
目录
说明
ipc_rpmsg_echo_linux
bin
可执行程序
project
工程源码
ipc_rpmsg_echo_linux案例案例说明
案例功能:基于RP Message的API实现Cortex-A53与Cortex-R5F核间通信,以及Cortex-A53与Cortex-M4F核间通信。
程序框图如下图所示。


图 2 程序框图

RTOS工程创建了两个RPMsg端点,其中一个端点与Linux内核交换消息,另外一个端点用于与Linux用户空间、裸机或RTOS交换消息。


图 3
案例测试环境搭建
请将案例bin目录下的am64-main-r5f0_0-fw、am64-main-r5f0_1-fw、am64-main-r5f1_0-fw、am64-main-r5f1_1-fw、am64-mcu-m4f0_0-fw可执行程序拷贝至评估板文件系统任意目录下。


图 4

进入评估板文件系统,执行如下命令,删除原来的软链接。
Target# rm /lib/firmware/am64-main-r5f0_0-fw
Target# rm /lib/firmware/am64-main-r5f0_1-fw
Target# rm /lib/firmware/am64-main-r5f1_0-fw
Target# rm /lib/firmware/am64-main-r5f1_1-fw
Target# rm /lib/firmware/am64-mcu-m4f0_0-fw


图 5

执行如下命令,创建新的软链接。
Target# ln -sf /home/root/am64-main-r5f0_0-fw /lib/firmware/am64-main-r5f0_0-fw
Target# ln -sf /home/root/am64-main-r5f0_1-fw /lib/firmware/am64-main-r5f0_1-fw
Target# ln -sf /home/root/am64-main-r5f1_0-fw /lib/firmware/am64-main-r5f1_0-fw
Target# ln -sf /home/root/am64-main-r5f1_1-fw /lib/firmware/am64-main-r5f1_1-fw
Target# ln -sf /home/root/am64-mcu-m4f0_0-fw /lib/firmware/am64-mcu-m4f0_0-fw


图 6

请将评估板重启,在系统启动过程中,Cortex-R5F、Cortex-M4F核心将会引导启动。在评估板文件系统执行如下命令,查询Cortex-R5F、Cortex-M4F核心与remoteproc关系。
Target# head /sys/class/remoteproc/remoteproc*/name


图 7

Cortex-R5F、Cortex-M4F核心与remoteproc关系如下表所示。AM6412包含1个Cortex-R5F核心:r5fss0_0;AM6442包含4个Cortex-R5F核心分别为:r5fss0_0、r5fss0_1、r5fss1_0、r5fss1_1。

表 2
CPU核心
remoteproc
m4fss0_0
remoteproc0
r5fss0_0
remoteproc1
r5fss0_1
remoteproc2
r5fss1_0
remoteproc3
r5fss1_0
remoteproc4

备注:核心与remoteproc对应关系,请以实际情况为准。
执行如下命令,可查看Cortex-M4F、Cortex-R5F核心程序运行日志。
Target# cat /sys/kernel/debug/remoteproc/remoteproc0/trace0
Target# cat /sys/kernel/debug/remoteproc/remoteproc1/trace0
Target# cat /sys/kernel/debug/remoteproc/remoteproc2/trace0
Target# cat /sys/kernel/debug/remoteproc/remoteproc3/trace0
Target# cat /sys/kernel/debug/remoteproc/remoteproc4/trace0


图 8

功能测试
本小节主要介绍如何基于RPMsg测试Cortex-A53与Cortex-M4F核间通信,以及Cortex-A53与Cortex-R5F核间通信。
  • 基于Linux应用程序测试
本次测试使用TI官方提供的rpmsg_char_simple工具,我司提供的文件系统已移植该工具。
进入评估板文件系统执行如下命令,查看程序相关参数。
Target# rpmsg_char_simple -h


图 9

参数解析:
rproc_id:核心ID,默认是0;
num_msgs:发送的RPMsg数据包数量,默认是100;
rpmsg_dev_name:RPMsg驱动设备节点,默认为不使用;
remote_endpt:对端核心接收RPMsg的端点,默认为14。
Cortex-M4F核心、Cortex-R5F核心对应的ID,如下表所示。
表 3
核心
ID
r5fss0_0
2
r5fss0_1
3
r5fss1_0
4
r5fss1_1
5
m4fss0_0
9
执行如下命令,Cortex-A53核心发送RPMsg数据包,Cortex-R5F核心(r5fss0_0)接收。
Target# rpmsg_char_simple -r 2 -n 10


图 10

执行如下命令,Cortex-A53核心发送RPMsg数据包,Cortex-R5F核心(r5fss0_1)接收。
Target# rpmsg_char_simple -r 3 -n 10


图 11

执行如下命令,Cortex-A53核心发送RPMsg数据包,Cortex-R5F核心(r5fss1_0)接收。
Target# rpmsg_char_simple -r 4 -n 10


图 12

执行如下命令,Cortex-A53核心发送RPMsg数据包,Cortex-R5F核心(r5fss1_1)接收。
Target# rpmsg_char_simple -r 5 -n 10


图 13

执行如下命令,Cortex-A53核心发送RPMsg数据包,Cortex-M4F核心(m4fss0_0)接收。
Target# rpmsg_char_simple -r 9 -n 10


图 14

  • 基于Linux驱动程序测试
本次测试使用TI官方提供的rpmsg_client_sample驱动程序,我司提供的文件系统已移植该工具。
执行如下命令,查看各个核心对应的virtio ID。
Target# cd /sys/bus/virtio/drivers/virtio_rpmsg_bus
Target# ls virtio* -l


图 15

表 4
设备节点
核心
Virtio ID
5000000.m4fss
m4fss0_0
0
78000000.r5f
r5fss0_0
1
78200000.r5f
r5fss0_1
2
78400000.r5f
r5fss1_0
3
78600000.r5f
r5fss1_1
4
进入评估板文件系统执行如下命令,加载驱动,并设置RPMsg数据包数量为10。
Target# modprobe rpmsg_client_sample count=10 //count表示发送的RPMsg数据包数量。



图 16

执行如下命令查看驱动运行信息,打印"incoming msg x (src:0xd)"表示数据收发成功,即核间通信成功。
Target# dmesg | grep rpmsg_client_sample


图 17

案例编译
打开CCS11.2.0软件,依次点击菜单栏"Project -> Import CCS Projects...",导入案例工程。


图 18

在弹出的如下界面,选中"ipc_rpmsg_echo_linux_am64x-evm_system_freertos",并勾选"Automatically import referenced projects found in same search-directory",然后点击Finish,导入Cortex-R5F核心与Cortex-M4F核心的全部工程。


图 19

在工程界面,右键选中ipc_rpmsg_echo_linux_am64x-evm_system_freertos,选择"Rebuild Project",重新编译全部工程。


图 20

编译完成后,将会在各个核心对应工程的Debug目录下生成可执行程序。


图 21

关键代码
  • 创建任务并调度任务运行。

图 22
  • 等待Linux就绪。

图 23
  • 创建两个接收RPMsg的任务:用于接收Linux内核、Linux用户空间、Cortex-R5F核心(r5fss0_0)的RPMsg。

图 24
  • RPMsg接收任务。

图 25



更多回帖

发帖
×
20
完善资料,
赚取积分