FPGA 是一种以数字
威廉希尔官方网站
为主的集成芯片,于 1985 年由 Xilinx 创始人之一 Ross Freeman 发明,属于可编程逻辑器件(Programmable Logic Device,PLD)的一种。这个时间比著名的摩尔定律出现的时间晚 20 年左右,但是 FPGA 一经发明,后续的发展速度之快,超出大多数人的想象。
图 1 中给出了 FPGA 芯片的实物图:
图 1 FPGA芯片实物图
FPGA 发展历程在 PLD 未发明之前,工程师使用包含若干个逻辑门的离散逻辑芯片进行威廉希尔官方网站
系统的搭建,复杂的逻辑功能实现起来较为困难。
为了解决这一问题,20 世纪 70 年代,可编程逻辑阵列(Programmable Logic Array,PLA)问世,PLA 中包含了一些固定数量的与门、非门,分别组成了“与平面”和“或平面”,即“与连接矩阵”和“或连接矩阵”,以及仅可编程一次的连接矩阵(因为此处编程是基于熔丝工艺的),因此可以实现一些相对复杂的与、或多项表达式的逻辑功能,PLA 内部结构如图 2 所示:
图 2 PLA内部结构
与 PLA 同时问世的还有可编程只读存储器(Programmable Read-Only Memory,PROM),其内部结构如图 3 所示。与 PLA 相同,PROM 内部包含“与连接矩阵”和“或连接矩阵”,但是与门的连接矩阵是硬件固定的,只有或门的连接矩阵可编程。
图 3 PROM内部结构
若只有与门的连接矩阵可编程,而或门的连接矩阵是硬件固定的,那么这种芯片叫作可编程阵列逻辑器件(Programmable Array Logic,PAL),根据输出威廉希尔官方网站
工作模式的不同,PAL 可分为三态输出、寄存器输出、互补输出,但 PAL 仍使用熔丝工艺,只可编程一次。PAL 的结构图如图 4 所示。
图 4 PAL结构图
在 PAL 的基础上,又发展出了通用阵列逻辑器件(Generic Array Logic,GAL),相比于 PAL,GAL 有两点改进:
- 采用了电可擦除的 CMOS 工艺,可多次编译,增强了器件的可重配置性和灵活性;
- 采用了可编程的输出逻辑宏单元(Output Logic Macro Cell,OLMC),通过编程 OLMC 可将 GAL 的输出设置成不同状态,仅用一个型号的GAL就可以实现所有PAL器件输出威廉希尔官方网站
的工作模式,增强了器件的通用性。
GAL 的结构图如图 5 所示:
图 5 GAL结构图
早期的 PLD 主要由上述四种类型的芯片组成,即 PROM、PLA、PAL 和 GAL。它们的共同特点是可以实现速度特性较好的逻辑功能,但由于其结构过于简单,所以只能实现规模较小的数字威廉希尔官方网站
。
随着科技的发展、社会的进步,人们对芯片的集成度要求越来越高。早期的 PLD 产品不能满足人们的需求,复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)诞生。可以把 CPLD 看作 PLA 器件结构的延续,一个 CPLD 器件也可以看作若干个 PLA 和一个可编程连接矩阵的集合。CPLD 的内部结构图如图 6 所示。
图 6 CPLD结构图
FPGA 比 CPLD 早几年问世,与 CPLD 并称为高密度可编程逻辑器件,但它们有着本质的区别。FPGA 芯片的内部架构并没有沿用类似 PLA 的结构,而是采用了逻辑单元阵列(Logic Cell Array,LCA)这样一个概念,改变了以往 PLD 器件大量使用与门、非门的思想,主要使用查找表和寄存器。
除此之外,FPGA 和 CPLD 在资源类型、速度等方面也存在差异,如下表所示。
表:FPGA与CPLD的性能比较器件种类/特性FPGACPLD
内部结构查找表(Look Up Table)乘积项(Product Term)
程序存储内部为 SRAM 结构,外挂 EEPROM 或 Flash 存储程序内部为 EEPROM 或 Flash
资源类型触发器资源丰富组合逻辑资源丰富
集成度高低
使用场合完成比较复杂的算法完成控制逻辑
速度快慢
其他资源RAM、PLL、DSP 等——
保密性一般不能保密(可以使用加密核)可加密
FPGA 的类型从内部实现机理来讲,可以分为基于 SRAM 技术、基于反熔丝技术、基于 EEPROM/Flash 技术。就威廉希尔官方网站
结构来讲,FPGA 可编程是指三个方面的可编程:可编程逻辑块、可编程 I/O、可编程布线资源。可编程逻辑块是 FPGA 可编程的核心,我们上面提到的三种技术也是针对可编程逻辑块的技术。
FPGA 的结构图如图 8 所示。
图 8 FPGA结构图
FPGA 的技术优势许多读者都知道 FPGA 功能强大,但它强大在哪儿?
以
单片机举例说明,我们都知道,单片机功能强大,几乎无所不能,而 FPGA 与之相比只强不弱。因为只要单片机能实现的功能,FPGA 就一定能实现,当然这需要加一个大前提——在 FPGA 资源足够多的情况下。但是 FPGA 能实现的功能,单片机却不一定能够轻松实现,这是不争的事实,如果你不相信,那只能说明你还不了解 FPGA。
说到这里,读者不禁要问,既然 FPGA 这么厉害,为什么单片机的使用范围更广?那是因为在商业中,价格往往是影响产品的重要因素之一。
单片机的价格要远远低于 FPGA,而且根据性能和资源的不同,FPGA 的价格也存在很大差异,单枚 FPGA 芯片的价格从几十元到几十万元不等。与之相比,单片机的价格要便宜很多,同样的功能我们如果可以用价格低廉的单片机实现,就不会选择相对昂贵的 FPGA 了,除非单片机满足不了功能需求。所以公司自己进行开发时,为了节约成本,可能会选择更加便宜的单片机,而不会选择相对昂贵的 FPGA,因为单片机、ARM 这种微处理器的需求量很大,所以价格上更有优势。
但无论是单片机、ARM 还是 FPGA,它们都只是一种帮助我们实现功能的工具,具体如何选择,需要根据具体问题具体分析。总之,没有万能的工具,只有符合生产需求的工具。我们不应对某种工具存在偏见,要综合考虑。同样,当你了解得更多的时候,你会发现这些工具都需要掌握。
FPGA 的应用场景远没有单片机和 ARM 这么多,主要针对单片机和 ARM 无法解决的问题。比如要求灵活高效、高吞吐量、低批量延时、快速并行运算、可重构、可重复编程、可实现定制性能和定制功耗的情况,这些工作只能由FPGA承担。
而相对于出于专门目的而设计的集成威廉希尔官方网站
(Applica
tion Specific Integrated Circuit,ASIC),FPGA 具有 3 点优势:
1) 灵活性通过对 FPGA 编程,FPGA 可以执行 ASIC 能够执行的任何逻辑功能。FPGA 的独特优势在于其灵活性,即随时可以改变芯片功能,在技术还未成熟的阶段,这种特性能够降低产品的成本与风险,在 5G 技术普及初期,这种特性尤为重要。
2) 上市时间缩短对 FPGA 编程后即可直接使用,FPGA 方案无须经历三个月至一年的芯片流片周期,为企业争取了产品上市时间。
3) 有一定成本优势FPGA 与 ASIC 的主要区别在于 ASIC 方案有固定成本而 FPGA 方案几乎没有,在使用量小的时候,采用 FPGA 方案无须一次性支付几百万美元的流片成本,同时也不用承担流片失败的风险,此时 FPGA 方案的成本低于 ASIC 的,随着使用量增加,FPGA 方案在成本上的优势逐渐减少,超过某一使用量后,由于大量流片产生了规模经济,因此 ASIC 方案在成本上更有优势,如下图所示:
图 9 FPGA方案和ASIC方案的成本比较
因此,FPGA 通常在数字信号处理、视频处理、图像处理、5G
通信领域、医疗领域、工业控制、云服务、加速计算、人工智能、数据中心、自动驾驶、芯片验证等领域发挥着不可替代的作用。只有掌握了通用的 FPGA 设计方法,才能在 FPGA 独领风骚的领域中大展宏图。
FPGA的应用方向FPGA 介于软件和硬件之间,用它做接口、做通信,它就偏向硬件;用它做算法、做控制,它就偏向软件。随着人工智能、机器视觉的崛起,FPGA 更加偏向软件算法的异构,有和 GPU 一争高下的潜力。
FPGA 与 GPU 性能对比图如图 10 所示:
图 10 FPGA与GPU的性能对比图
FPGA 软件方向:以软件开发为主,开发 FPGA 在数据分析、人工智能、机器视觉等领域的加速应用能力,主要采用 OpenCL 和 HLS 技术实现软硬件协同开发。
FPGA 硬件方向:以逻辑设计为主,针对FPGA特定领域的应用设计、集成威廉希尔官方网站
设计以及芯片验证能力。
FPGA 最初的应用领域是通信领域,但是随着信息产业和微
电子技术的发展,FPGA 技术已经成为信息产业最热门的技术之一,应用范围扩大,遍及航空航天、汽车、医疗、广播、测试测量、消费电子、工业控制等热门领域,而且随着工艺的发展和技术的进步,从各个角度开始渗透到生活当中。