数十年来,横向扩散金属氧化物半导体(LDMOS)技术在商业应用中的射频半导体市场领域起主导作用。如今,这种平衡发生了转变,硅基氮化镓(GaN-on-Si)技术成为接替传统LDMOS技术的首选技术。
与LDMOS相比,硅基氮化镓的性能优势已牢固确立——它可提供超过70%的功率效率,将每单位面积的功率提高4到6倍,并且可扩展至高频率。同时,综合测试数据已证实,硅基氮化镓符合严格的可靠性要求,其射频性能和可靠性可媲美甚至超越昂贵的碳化硅基氮化镓(GaN-on-SiC)替代技术。
硅基氮化镓成为射频半导体行业前沿技术之时正值商用无线基础设施发展的关键时刻。硅基氮化镓相比于LDMOS技术的性能优势已经过验证,这推动了其在最新一代4G LTE基站中广泛应用,并使其定位为最适合未来5G无线基础设施的实际促技术,其轰动性市场影响可能会远远超出手机连接领域,而将涉足运输、工业和娱乐应用等领域。
展望未来,基于硅基氮化镓的射频技术有望取代旧式磁控管和火花塞技术,充分发挥烹饪、照明和汽车点火等商用固态射频能量应用的价值和潜力,我们相信上述应用的能源/燃料效率以及加热和照明精度将在不久的将来发生质的飞跃。
数十年来,横向扩散金属氧化物半导体(LDMOS)技术在商业应用中的射频半导体市场领域起主导作用。如今,这种平衡发生了转变,硅基氮化镓(GaN-on-Si)技术成为接替传统LDMOS技术的首选技术。
与LDMOS相比,硅基氮化镓的性能优势已牢固确立——它可提供超过70%的功率效率,将每单位面积的功率提高4到6倍,并且可扩展至高频率。同时,综合测试数据已证实,硅基氮化镓符合严格的可靠性要求,其射频性能和可靠性可媲美甚至超越昂贵的碳化硅基氮化镓(GaN-on-SiC)替代技术。
硅基氮化镓成为射频半导体行业前沿技术之时正值商用无线基础设施发展的关键时刻。硅基氮化镓相比于LDMOS技术的性能优势已经过验证,这推动了其在最新一代4G LTE基站中广泛应用,并使其定位为最适合未来5G无线基础设施的实际促技术,其轰动性市场影响可能会远远超出手机连接领域,而将涉足运输、工业和娱乐应用等领域。
展望未来,基于硅基氮化镓的射频技术有望取代旧式磁控管和火花塞技术,充分发挥烹饪、照明和汽车点火等商用固态射频能量应用的价值和潜力,我们相信上述应用的能源/燃料效率以及加热和照明精度将在不久的将来发生质的飞跃。
举报