软件模型验证
软件实现的主要目的是为硬件实现建立验证模型,整个软件的结构如图3所示。在软件验证系统实现的过程中,有限域上的加法是异或操作。有限域上的乘法和求逆是关键点,必须预先考虑到硬件实现时的资源消耗,需要高效的算法。在此系统中使用了复合域GF((2n)m)带来的特殊性,可以高效、快速的实现乘法和求逆运算。
* GF(2n)上的乘法:A(y)&TImes;B(y)=C(Y)modQ(y),Q(y)为既约多项式。常用的有: Paar-Rosner乘法器、Mastrovito乘法器、Massey-Omura乘法器、Hasan-Bhargava乘法器等,此处介绍两种选择:
1) 当n比较小时可用查表法实现,设ω为Q(y)=0的本原根,则F2n={0,ω,Aω2n-1},利用查表法取得A、B的级次数a、b,C的级次c=a+b,再次利用查表法由c得C。在本系统中就使用了此法实现GF(2n)上的乘法。
2) 当n比较大时,利用查表法资源消耗太大,难以承受,可利用C=Z&TImes;B(n比较大时),Z是由A(y),Q(y)确定的矩阵,其中:
* 复合有限域的乘法:以GF((24)2)为例,利用GF(24)上的乘法和加法可以构造出GF(28)的乘法。子域GF(24)的本原多项式为Q(y)=y4+y+1,第二个子域的本原多项式为R(z)=z3+z+ω14,其中ω是GF(24)的基底元素,满足Q(ω)=0。域中两个元素的乘法[a0+a1z]&TImes;[b0+b1z]可以表示为:
这样GF((24)2)在复合域上的乘法就可以通过GF(24)上的有限域的数学运算而得到。
* 复合有限域的逆运算:复合有限域GF((2n)m)中的元素A的逆为:
其中
可以观察到Ar属于子域GF(2n)中的元素,可以较容易的求取(Ar)-1的值。
FPGA硬件实现
软件化的实现方法开发时间短,但是其加密速度比较慢,妨碍了椭圆曲线加密的实用性。FPGA的方法综合了软件的灵活性和硬件的安全性,提供了比软件化方法优越的速度,和传统的ASIC实现相比,可编程器件由于其高度的灵活性,更适合于密码学的应用领域。
在软件模型的基础上,我们针对FPGA硬件的特性对模型进行了优化。根据椭圆曲线加密算法的要求,对加密系统进行模块化设计,每个模块独立完成其各自功能,模块之间进行相互数据交换以及时序控制,达到加密功能。图4是椭圆曲线加密系统FPGA实现的威廉希尔官方网站
模块框图。
其中,椭圆曲线加密控制系统模块是整个系统的核心。当Ready为True时,系统读入初始数据并且控制RAM进行初始数据的存储。在运算过程中,该模块根据数据源对选择器进行控制循环,进行PP=R和PQ=R运算,获得最后结果,然后通过Out_Ready信号对结果进行输出;选择器模块根据控制系统模块提供的指令对PP=R模块和PQ=R模块进行控制,并且提供相应的实时数据流;PP=R模块和PQ=R模块利用对有限域上的加法和乘法运算进行时序控制求出椭圆曲线上点的加法运算,将直接影响到整个系统的速度性能,因此必须对有限域上的加法和乘法运算设计合理的输入输出数据流,以达到高效率的运算速率。各种存储器模块根据不同的指令分别存放系统的初始值、运算过程中的中间值以及系统运算结果。
综合以上各种因素,我们选择了XILINX 公司的VirtexII器件,ISE 4.1作为开发平台,VHDL作为开发语言。由于168位的椭圆曲线加密算法的计算量比较大,所以在FPGA实现的时候,布线是个值得考虑的因素。对于FPGA器件的选择应考虑到布线资源,Virtex 系列提供的布线资源比较丰富。在Modelsim上进行仿真后得到性能指标为:在40MHz时钟驱动下第一次加密或者解密时需要初始的建立时间,明文或者密文的输出需要2ms左右,其后的明文或者密文的输出大约为25Mbps。可以看出,这是一个比较高的速率,可以应用于很多场合。
软件模型验证
软件实现的主要目的是为硬件实现建立验证模型,整个软件的结构如图3所示。在软件验证系统实现的过程中,有限域上的加法是异或操作。有限域上的乘法和求逆是关键点,必须预先考虑到硬件实现时的资源消耗,需要高效的算法。在此系统中使用了复合域GF((2n)m)带来的特殊性,可以高效、快速的实现乘法和求逆运算。
* GF(2n)上的乘法:A(y)&TImes;B(y)=C(Y)modQ(y),Q(y)为既约多项式。常用的有: Paar-Rosner乘法器、Mastrovito乘法器、Massey-Omura乘法器、Hasan-Bhargava乘法器等,此处介绍两种选择:
1) 当n比较小时可用查表法实现,设ω为Q(y)=0的本原根,则F2n={0,ω,Aω2n-1},利用查表法取得A、B的级次数a、b,C的级次c=a+b,再次利用查表法由c得C。在本系统中就使用了此法实现GF(2n)上的乘法。
2) 当n比较大时,利用查表法资源消耗太大,难以承受,可利用C=Z&TImes;B(n比较大时),Z是由A(y),Q(y)确定的矩阵,其中:
* 复合有限域的乘法:以GF((24)2)为例,利用GF(24)上的乘法和加法可以构造出GF(28)的乘法。子域GF(24)的本原多项式为Q(y)=y4+y+1,第二个子域的本原多项式为R(z)=z3+z+ω14,其中ω是GF(24)的基底元素,满足Q(ω)=0。域中两个元素的乘法[a0+a1z]&TImes;[b0+b1z]可以表示为:
这样GF((24)2)在复合域上的乘法就可以通过GF(24)上的有限域的数学运算而得到。
* 复合有限域的逆运算:复合有限域GF((2n)m)中的元素A的逆为:
其中
可以观察到Ar属于子域GF(2n)中的元素,可以较容易的求取(Ar)-1的值。
FPGA硬件实现
软件化的实现方法开发时间短,但是其加密速度比较慢,妨碍了椭圆曲线加密的实用性。FPGA的方法综合了软件的灵活性和硬件的安全性,提供了比软件化方法优越的速度,和传统的ASIC实现相比,可编程器件由于其高度的灵活性,更适合于密码学的应用领域。
在软件模型的基础上,我们针对FPGA硬件的特性对模型进行了优化。根据椭圆曲线加密算法的要求,对加密系统进行模块化设计,每个模块独立完成其各自功能,模块之间进行相互数据交换以及时序控制,达到加密功能。图4是椭圆曲线加密系统FPGA实现的威廉希尔官方网站
模块框图。
其中,椭圆曲线加密控制系统模块是整个系统的核心。当Ready为True时,系统读入初始数据并且控制RAM进行初始数据的存储。在运算过程中,该模块根据数据源对选择器进行控制循环,进行PP=R和PQ=R运算,获得最后结果,然后通过Out_Ready信号对结果进行输出;选择器模块根据控制系统模块提供的指令对PP=R模块和PQ=R模块进行控制,并且提供相应的实时数据流;PP=R模块和PQ=R模块利用对有限域上的加法和乘法运算进行时序控制求出椭圆曲线上点的加法运算,将直接影响到整个系统的速度性能,因此必须对有限域上的加法和乘法运算设计合理的输入输出数据流,以达到高效率的运算速率。各种存储器模块根据不同的指令分别存放系统的初始值、运算过程中的中间值以及系统运算结果。
综合以上各种因素,我们选择了XILINX 公司的VirtexII器件,ISE 4.1作为开发平台,VHDL作为开发语言。由于168位的椭圆曲线加密算法的计算量比较大,所以在FPGA实现的时候,布线是个值得考虑的因素。对于FPGA器件的选择应考虑到布线资源,Virtex 系列提供的布线资源比较丰富。在Modelsim上进行仿真后得到性能指标为:在40MHz时钟驱动下第一次加密或者解密时需要初始的建立时间,明文或者密文的输出需要2ms左右,其后的明文或者密文的输出大约为25Mbps。可以看出,这是一个比较高的速率,可以应用于很多场合。
举报