如何从不同角度分析电容去耦原理

模拟技术

2435人已加入

描述

采用电容去耦是解决电源噪声问题的主要方法。这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。

对于电容去耦,很多资料中都有涉及,但是阐述的角度不同。有些是从局部电荷存储(即储能)的角度来说明,有些是从电源分配系统的阻抗的角度来说明,还有些资料的说明更为混乱,一会提储能,一会提阻抗,因此很多人在看资料的时候感到有些迷惑。其实,这两种提法,本质上是相同的,只不过看待问题的视角不同而已。

1.   从储能的角度来说明电容退耦原理。

在制作威廉希尔官方网站 板时,通常会在负载芯片周围放置很多电容,这些电容就起到电源退耦作用。其原理可用图1说明。

电容去耦

电容去耦(公式1)

只要电容量C足够大,只需很小的电压变化,电容就可以提供足够大的电流,满足负载瞬态电流的要求。这样就保证了负载芯片电压的变化在容许的范围内。这里,相当于电容预先存储了一部分电能,在负载需要的时候释放出来,即电容是储能元件。储能电容的存在使负载消耗的能量得到快速补充,因此保证了负载两端电压不至于有太大变化,此时电容担负的是局部电源的角色。

从储能角度理解电容容易造成一种错觉,认为电容越大越好。而且容易误导大家认为储能作用发生在低频段,不容易向高频扩展。实际上,从储能角度理解,可以解释任何电容的功能。下面举例。

电容去耦

图2 电容储能作用向高频扩展

如上图所示,假设在低频段,比如几十khz,由于低频信号在电感上产生的感抗可以忽略,所以在低频段电容的ESL可以近似等于0。当负载瞬间(几十khz)需要大电流的时候,电容可以通过ESR向负载供电,供电的实时性很高,eSR只是消耗了一部分电量,但不影响供电的实时性。由于频率比较低,所以放电时间也比较长(频率的倒数),所以需要电容的容量较大一些,可以长时间放电。所以低频段储能好理解。

同样大的电容,假设负载突变的频率较高(几十Mhz或者更高),那么当负载顺么变化的时候(几十Mhz或者更高),ESL上形成的感抗不容忽视,这个感抗会产生一个反向电动势去阻止电容向负载供电,所以负载上实际获得的电流的瞬态性能比较差,即,电容的电流无法供应瞬间的电流突变,尽管电容容量很大,但由于ESL较大,此时的大容量储能发挥不了作用。实际上,频率较高,电容给负载供电的时间缩短(频率的倒数),也不需要电容有那么大的储能。对于高频,关键的因素是ESL,要降低电容的ESL,选择小封装的小电容,ESL显著降低,这就是为什么我们高频选择小电容的原因,另外走线长度引入的电感也会折算到ESL参数里,所以小电容一定要靠近pin。

从储能的这个角度理解甚至可以扩展到pF级电容。理论上假设不存在ESR,ESL以及传输阻抗为0,则一颗大电容完全胜任所有频率。但这种假设并不存在。所以威廉希尔官方网站 中需要大小电容合理搭配去应对不同频率下的负载的能力供给。而且电容越靠近负载,传输线的等效电感,电阻的影响就越小。

电容去耦

图3 手机Vbat电源电容分配图

举例,在手机设计中,给vbat供电支路的几个分支上都挂47uf电容,如上图所示,连接器附近,PMU附近,PA附近都挂47uf电容,认为只有PA旁边的47uf对PA有效果,连接器旁边的,PMU旁边的对PA没有效果,实际不是这样的,当PA需要瞬间电流的时候,三颗钽电容都会向PA供电,供电过程完全取决于瞬间压差,哪颗电容与PA的瞬间压差最大,哪颗供电越积极。远离PA的电容需要考虑传输线的阻抗和感抗。对于低频,这点寄生感抗可以忽略。对于217HZ来说,PA所需的电流三颗电容加起来都远远不够用,故在GSM大功率的时候,PA从三颗电容上均取电流。

对于低频,寄生电感的作用可以忽略,这些大电容距离芯片的远近只要体现在走线电阻上,一般电源线走线电阻压降在100毫欧以内,对电容充放电影响非常小,故可以认为大电容在主板上可以不必追求距离芯片非常近。

从储能的角度来理解电源退耦,非常直观易懂,但是对威廉希尔官方网站 设计帮助不大。因为不好从量化角度去考量,适合定性分析。从阻抗的角度理解电容退耦,能让我们设计威廉希尔官方网站 时有章可循。实际上,在决定电源分配系统的去耦电容量的时候,用的就是阻抗的概念。

2.   从阻抗的角度来理解退耦原理。

将图1中的负载芯片拿掉,如图2所示。从AB两点向左看过去,稳压电源以及电容退耦系统一起,可以看成一个复合的电源系统。这个电源系统的特点是:不论AB两点间负载瞬态电流如何变化,都能保证AB两点间的电压保持稳定,即AB两点间电压变化很小。

电容去耦

图4 电源部分

我们可以用一个等效电源模型表示上面这个复合的电源系统,如图3,恒压源与内阻的串联模型。

电容去耦

对于这个威廉希尔官方网站 可写出如下等式:

电容去耦       (公式2)

假设供电源是一个理想的电压源,即Z=0,且假设传输途径的阻抗也为0,那么负载不论怎么变化,变化速度有多快,电压源都能够反应过来,并且确保A,B两点电压始终恒定。但实际上电源内阻并不为零,而且传输线也不是理想的,而且这些影响因素是个复数,与频率相关,所以就出现了电源的PDN阻抗。

我们的最终设计目标是,不论AB两点间负载瞬态电流如何变化,都要保持AB两点间电压变化范围很小,根据公式2,这个要求等效于电源系统的阻抗Z要足够低。在图4中,我们是通过去耦电容来达到这一要求的,因此从等效的角度出发,可以说去耦电容降低了电源系统的阻抗。另一方面,从威廉希尔官方网站 原理的角度来说,可得到同样结论。电容对于交流信号呈现低阻抗特性,因此加入电容,实际上也确实降低了电源系统的交流阻抗。

从阻抗的角度理解电容退耦,可以给我们设计电源分配系统带来极大的方便。实际上,电源分配系统设计的最根本的原则就是使阻抗最小。最有效的设计方法就是在这个原则指导下产生的。

为了理解电源输出阻抗(内阻)的概念,我们回忆一下电源内阻的定义:断开负载,从负载端看进去,恒压源短路,横流源断路。如图6所示。

电容去耦

图6 电源内阻等效图

从图6(b)可以看出,并联电容后从负载端看过去电源的内阻发生新的变化,即Z’=Z//Z1,其中Z1为电容的容抗。可见新的内阻Z’

图6中的电容容抗,不能简单的使用jwC进行计算,因为电容不是理想模型,它包含ESR,ESL,而这些需要实测模型。图7为47uF的钽电容的|Z|曲线。它反映了该电容在不同频率下的阻抗值(不考虑相位信息)。从图中可以看出,该电容阻抗最低的点表现在700K频率时,阻抗是8毫欧。

电容去耦

图7  47uF钽电容的Z曲线

这个曲线图是实测值,包含了该电容的所有信息(除相位外)。

比如:它包含了电容的容量信息,一般容量越大的电容谐振点越低,要达到700k的谐振点,只有这种容值附近的电容才能够达到。0.1uf电容无论如何也达不到这个频点。它包含了ESL信息,假设ESL=0,则曲线是一条有斜率的直线。它也包含了ESR信息,比如谐振点处的8毫欧就是它的ESR值。所以,假如我们使用阻抗特性描述电容时,大家千万不要再使用蓄流的概念理解,比如,PMU上使用10uF电容和使用4.7uf电容从阻抗曲线上看有一些区别,但我们可以接受,此时千万不要再以蓄流为理由说10uF比4.7uF储能多,所以效果好,两种研究方法是从不同角度去分析同一个问题,交织在一起会混乱。建议使用阻抗法分析,可以做到定量分析。

举例说明,比如我们设计防浪涌威廉希尔官方网站 ,一般浪涌信号的波形如图8所示。

电容去耦

图8  0.5us-100kHz的浪涌波形

假设我们要消除图8所示的浪涌波形,需要加电容,但加多大的电容,如果从电容充放电角度去分析非常复杂,一两页纸张都不容易讲明白。但假如从阻抗角度分析,我们只需要一个简单的要求,即加一颗电容,使得图8所示的谐波被短路到GND,浪涌就消除了。怎么实现这个要求呢,必须选择一颗电容,使得该电容对于该浪涌信号的频率下的阻抗最低即可。所以思路清晰了,按照两部走:

1 确定浪涌信号的频率。图8可以看出浪涌信号近似于正弦波,基波频率大概为100khz,只有在起始瞬间会有一些高次谐波,对于这个高次谐波可以估计一下,大概为几Mhz级别。

2 寻找两颗电容,一颗谐振点在100kHz的电容去消除浪涌信号中的基波信号。再找一颗谐振点在几Mhz的电容去消除浪涌信号中的高次谐波。假如对浪涌信号的高次谐波预估不确切,可以多加几颗其他可能的频段的电容。

实际操作中发现,即使470uf的电容,其谐振点也在200k,100khz的谐振点的电容估计更大。而手机根本不可能放置这么大的电容,所以只能看47uF(手机能放置的最大电容)对于100kz的阻抗了。470uF在200khz时阻抗为3毫欧,在100khz时为5毫欧姆。47uf在100khz时阻抗为40毫欧姆。可以接受,如果再并联一颗47uF电容,则100khz时阻抗减半,为20毫欧。个人认为对于浪涌信号,短路电阻为0.1欧姆以内就可以满足要求。根据这个要求,电容还可以变小一些。电容对于静电防护的原理也是一样的,防护之前必须知道静电的频谱。

对于图3那样的电容布局,实际上3颗47uF电容都对于浪涌有防护作用,但这三颗又不是直接的并联关系,下面详细分析这三颗电容对于静电防护的实际模型。

假如浪涌是从电池连接器处进入,则应该分析电池连接器处的阻抗。如图9所示,对于图3的布局电容进行了等效,等效之后可以看出,Zc1,Zc2布局位置较远,对于浪涌的防护不能使用电容测试模型,LX的加入,电容的|Z|曲线会向左边偏移,RX的加入,|Z|曲线会向上平移。移动的大小取决于LX,Rx的量值,这些都使得电容对于浪涌的防护能力变差。具体可以通过PCB仿真实现,通过仿真可以获知连接器入口处100khz的阻抗,从而知道对于浪涌防护的效果。一般来说,100k低频段,Lx的影响可以忽略。

电容去耦

图9 三颗不同位置的47uF电容对于浪涌的防护示意图

从上图可以看出,布局源的电容实际上也对浪涌的防护起到了作用,只是作用没有布局在连接器处得效果好,至于差别多少需要仿真去量化。

引申到我们工作中的例子,PA旁边放置22uF电容的作用是干什么的,2012解释为浪涌防护,而且还要求必须布置在pin脚附近,对于这个我不太理解,浪涌从哪里来?若从连接器处来,则应该优先布置在连接器附近。若从减小电压跌落角度考虑,我们来看看这个模型

电容去耦

从储能角度更好理解,PA需要电流时导致电压跌落,如果电容供给PA一部分电流,会小电压跌落,但是能减小多少呢,没办法量化。而从阻抗的角度分析,电源上出现了一个217Hz的方波,我们需要加电容将这个方波(可以认为是干扰波)短路到GND。方波的频谱包含了217Hz及其几次倍频,幅值最大的部分在基波,我们要首先想办法滤除基波,滤除的办法是找一颗谐振点在217Hz的电容,对于这么低的一个频率,我们可以认为ESL对其没有影响,那么电容容抗可以用理想模型1/jwc来计算,假设理想的阻抗为0.1欧姆,那么通过计算,需要的电容容量为7338uF。即使用标称6800,1000uf之类的电容滤波才能看到明显效果。那么我们22uF电容能有多大能耐呢!只能滤除一些倍频频谱。

从此例子可以看出,从储能角度能够解释的,使用阻抗也能解释,且使用阻抗分析方法可以很容易做到定量分析。

电源去耦涉及到很多问题:总的电容量多大才能满足要求?如何确定这个值?选择那些电容值?放多少个电容?选什么材质的电容?电容如何安装到威廉希尔官方网站 板上?电容放置距离有什么要求?下面分别介绍。

目标阻抗(Target Impedance)定义为:

电容去耦

电容去耦为要进行去耦的电源电压等级,常见的有5V、3.3V、1.8V、1.26V、1.2V 等。

电容去耦为允许的电压波动,在电源噪声余量一节中我们已经阐述过了,典型值为2.5%。

电容去耦为负载芯片的最大瞬态电流变化量。该定义可解释为:能满足负载最大瞬态电流供应,且电压变化不超过最大容许波动范围的情况下,电源系统自身阻抗的最大值。超过这一阻抗值,电源波动将超过容许范围。

对目标阻抗有两点需要说明:

1、目标阻抗是电源系统的瞬态阻抗,是对快速变化的电流表现出来的一种阻抗特性。

2 、目标阻抗和一定宽度的频段有关。在感兴趣的整个频率范围内,电源阻抗都不能超过这个值。阻抗是电阻、电感和电容共同作用的结果,因此必然与频率有关。感兴趣的整个频率范围有多大?这和负载对瞬态电流的要求有关。顾名思义,瞬态电流是指在极短时间内电源必须提供的电流。如果把这个电流看做信号的话,相当于一个阶跃信号,具有很宽的频谱,这一频谱范围就是我们感兴趣的频率范围。

需要多大的电容量:

有两种方法确定所需的电容量。第一种方法利用电源驱动的负载计算电容量。这种方法没有考虑ESL 及ESR 的影响,因此很不精确,但是对理解电容量的选择有好处。第二种方法就是利用目标阻抗(Target Impedance)来计算总电容量,这是业界通用的方法,得到了广泛验证。你可以先用这种方法来计算,然后做局部微调,能达到很好的效果,如何进行局部微调,是一个更高级的话题。下面分别介绍两种方法。

方法一:利用电源驱动的负载计算电容量

设负载(容性)为 30pF,要在 2ns 内从 0V 驱动到 3.3V,瞬态电流为:

电容去耦

如果共有36 个这样的负载需要驱动,则瞬态电流为:36*49.5mA=1.782A。假设容许电压波动为:3.3*2.5%=82.5 mV,所需电容量为

C=I*dt/dv=1.782A*2ns/0.0825V=43.2nF

说明:所加的电容实际上作为抑制电压波纹的储能元件,该电容必须在2ns 内为负载提供1.782A  的电流,同时电压下降不能超过82.5 mV,因此电容值应根据 82.5  mV 来计算。记住:电容放电给负载提供电流,其本身电压也会下降,但是电压下降的量不能超过82.5mV(容许的电压波纹)。这种计算没什么实际意义,之所以放在这里说一下,是为了让大家对去耦原理认识更深。

方法二:利用目标阻抗计算电容量

为了清楚的说明电容量的计算方法,我们用一个例子。要去耦的电源为1.2V,容许电压波动为2.5%,最大瞬态电流 600mA,

第一步:计算目标阻抗

电容去耦

第二步:确定稳压电源频率响应范围。

和具体使用的电源片子有关,通常在 DC 到几百 kHz 之间。这里设为 DC 到 100kHz。在100kHz 以下时,电源芯片能很好的对瞬态电流做出反应,高于 100kHz 时,表现为很高的阻抗,如果没有外加电容,电源波动将超过允许的 2.5%。为了在高于 100kHz 时仍满足电压波动小于 2.5%要求,应该加多大的电容?

第三步:计算 bulk 电容量

当频率处于电容自谐振点以下时,电容的阻抗可近似表示为:

电容去耦

频率 f 越高,阻抗越小,频率越低,阻抗越大。在感兴趣的频率范围内,电容的最大阻抗不能超过目标阻抗,因此使用 100kHz 计算(电容起作用的频率范围的最低频率,对应电容最高阻抗)。

电容去耦

第四步:计算 bulk 电容的最高有效频率

当频率处于电容自谐振点以上时,电容的阻抗可近似表示为:

电容去耦

频率 f 越高,阻抗越大,但阻抗不能超过目标阻抗。假设 ESL 为 5nH,则最高有效频率为:

电容去耦

样一个大的电容能够让我们把电源阻抗在100kHz 到1.6MHz  之间控制在目标阻抗之下。当频率高于1.6MHz 时,还需要额外的电容来控制电源系统阻抗。

第五步:计算频率高于1.6MHz  时所需电容

如果希望电源系统在500MHz  以下时都能满足电压波动要求,就必须控制电容的寄生电感量。必须满足

电容去耦

所以有:

电容去耦

假设使用 0402 封装陶瓷电容,寄生电感约为 0.4nH,加上安装到威廉希尔官方网站 板上后

过孔的寄生电感(本文后面有计算方法)假设为 0.6nH,则总的寄生电感为 1 nH。为了满足总电感不大于 0.16 nH 的要求,我们需要并联的电容个数为:1/0.016=62.5 个,因此需要 63 个 0402 电容。

为了在 1.6MHz 时阻抗小于目标阻抗,需要电容量为:

电容去耦

因此每个电容的电容量为 1.9894/63=0.0316 uF。

综上所述,对于这个系统,我们选择 1 个 31.831 uF 的大电容和 63 个 0.0316 uF 的小电容即可满足要求。

审核编辑:黄飞

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
评论(0)
发评论
jf_40390502 2024-03-08
0 回复 举报
受益匪浅 收起回复

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分