MEMS/传感技术
摘要:本应用笔记主要讲述采用MAX44009环境光传感器控制便携式设备(譬如智能手机和平板电脑)背光亮度的应用。针对背光亮度调节,本文介绍了两种不同的控制方案。此外,本文还就如何获得更好的控制效果提供了相关建议,同时也提供了实现本文所述算法的源代码。
引言
环境光传感器(ALS)集成威廉希尔官方网站 正越来越多地用于各种显示器和照明设备,以节省电能,改善用户体验。借助ALS解决方案,系统设计师可根据环境光强度,自动调节显示屏的亮度。因为背光照明的耗电量在系统的总耗电量中占据很大的比例,实行动态的背光亮度控制,可节省大量的电能。此外,它还能够改善用户体验,让显示屏亮度根据环境光条件自行调整到最佳状态。
系统实现需要三大部分:监测环境光强的光传感器、数据处理装置(通常是微控制器)、控制背光输入电流的执行器。
背光控制:环境光传感器
图1是实施背光控制的系统示范框图。在这套组合中,光传感器是关键的组成部分,因为它要向系统的其他模块提供环境光强信息。光传感器必须具备将光信号转换成电信号的信号转换器(譬如光电二极管或CdS光敏电阻)和信号放大和/或调节装置以及模/数转换器(ADC)。
图1. 实施背光控制的系统框图
图2所示为分立光电二极管威廉希尔官方网站 ,从图中可以看出,该威廉希尔官方网站 需要一个或多个运算放大器:一个用于电流到电压的转换,可能还需要一级放大,提供附加增益。它还包括一些分支威廉希尔官方网站 ,用于供电,确保高度可靠的信号链。而在空间极其宝贵的应用中,所需元件的数量过多可能导致空间受限问题。
图2. 光电二极管威廉希尔官方网站 分立设计
这里还存在一个更细微的问题。具体而言,理想情况下,应确保环境光的测量模拟了人眼对光线的响应机制。这通常借助CIE提供的视觉亮度曲线(图3)。然而,光电二极管很少能够完全模拟这种响应机制,因为它们通常具有很高的红外(IR)灵敏度。在IR强度较大的光照条件(譬如白炽灯或日光)下,这种红外灵敏度会造成错误地判断光线强度。
解决上述问题的方法之一是使用两个光电二极管:一个采用对可见光和红外光都很敏感的元件,另一个采用只对红外光敏感的元件。最终用前者的响应值减去后者的响应值,将红外干扰降至最小,获得准确的可见光响应。
这种解决方案虽然有效,却增加了分立威廉希尔官方网站 的占用空间。通常还很难、甚至不可能让两个分立的光电二极管配合得足够紧密,以实现消除红外干扰的目的。如果不配备精密放大器(譬如对数放大器),动态范围可能很小。换句话说,很难利用这种组合获得可重复的结果。
图3. CIE曲线和典型的光电二极管
高集成度解决方案不仅能够获得比人眼光学系统更真实的光强数据,还能够节省大量空间。MAX9635、MAX44009等环境光传感器,可将所有信号调节和模/数转换器集成在一个小封装(2mm x 2mm UTDFN封装)内,从而在空间受限应用中有效节省威廉希尔官方网站 板面积。
图4提供了MAX44009的功能框图,采用I²C通信协议,使其与微控制器的连接方式更简单,数据传输速度更快。除此之外,该解决方案的高集成特性使其能够置于柔性电缆,安装在离主威廉希尔官方网站 板距离合适的位置。
图4. MAX44009功能框图
背光控制:调节显示屏亮度
该控制方案的第二部分是调节显示屏的背光亮度。这可通过多种方式实现,具体取决于设备中的显示屏模块。有两种最简单的方式,一种是借助脉冲宽度调制(PWM)方案的直接调节方式,另一种是采用显示屏控制器的间接调节方式。
许多显示屏模块如今都配有一个集成控制器,用户可以通过向控制器发送串行命令,直接设置背光亮度。如果显示屏模块未配备集成控制器,还可安装一个简单的背光控制执行器,控制显示屏后面用于背光照明的白光LED灯的输入电流。实现这种控制的一种简单办法是:直接给LED串联一个场效应晶体管(FET),使用PWM信号快速打开、关闭FET (图5)。然而,也可以利用单一芯片(用于LED控制的MAX1698升压转换器)准确、可靠地调节(图6),请参考应用笔记3866“Low-power PWM output controls LED brightness”,获取详细信息。
图5. 简单的PMW控制威廉希尔官方网站
图6. 基于MAX1698的LED亮度调节器
背光控制:建立连接
最后一步就是在传感器和执行器之间建立连接,通过微控制器实现。有人可能首先要问:“环境光强如何映射到背光亮度?”事实上,有些文献专门介绍了相关方案。其中一种映射方式是,Microsoft®针对运行Windows® 7¹操作系统的计算机提出的。图7所示曲线是由Microsoft提供的,它可以将环境光强度映射到显示屏亮度(以全部亮度的百分比表示)。
图7. 将环境光强映射为最佳显示屏亮度的曲线示例
这种特殊曲线可以用以下函数表示:
如果设备采用的是已集成亮度控制功能的LCD控制芯片,就可通过向芯片发送指令,轻松设置背光亮度。如果设备采用的是PWM直接控制亮度,则要考虑如何将比例信号映射至显示屏亮度。
在MAX1698示例中,根据其产品说明书的介绍,可以将驱动电流映射为电压。通过这个示例,我们可以假设LED电流强度几乎与其电流呈线性关系。这样,我们就可以在上述等式中乘上一个系数,计算出PWM所映射的有效电压,该电压再被映射至LED电流,最后转化成显示屏亮度。
方案实施
最好不要从一个亮度级直接跳转到另一个亮度级,而是平滑上调和下调背光亮度,确保不同亮度等级之间无缝过渡。为了达到这一目的,最好采用带有固定或不同亮度步长、可逐步调节亮度的定时中断,也可采用带有可控制LED输入电流的PWM值的定时中断,或者是能够发送到显示屏控制器的串行指令的定时中断。图8提供了这种算法的一个示例。
图8. 步进式亮度调节的算法示例
另一个问题是,系统响应环境光强变化的速度。我们应尽量避免过快地改变亮度等级。这是因为光强的瞬间变化(譬如一扇窗户打开或瞬间有一束光扫过)可能导致背光亮度发生不必要的变化,这往往会造成用户感觉不适。并且,较长的响应时间还有助于减少微控制器对光传感器的检测次数,从而可以释放一定的微控制器资源。
最初级的方法就是每隔一两秒钟检查一次光传感器,然后相应地调整背光亮度。更好的方法是,只有光线强度偏离特定范围一定时间后,才对背光亮度进行调节。譬如,如果正常光强是200lux,我们可能只会在光强降到180lux以下或升至220lux以上,而且持续时间超过数秒的情况下才调节亮度。幸运的是,MAX9635和MAX44009都集成了中断引脚和阈值寄存器,可轻松实现这个目的。请参考应用笔记4786“MAX9635环境光传感器的接口程序”,获取更多详细信息。
源代码 #define MAX44009_ADDR 0x96 // begin definition of slave addresses for MAX44009 #define INT_STATUS 0x00 #define INT_ENABLE 0x01 #define CONFIG_REG 0x02 #define HIGH_BYTE 0x03 #define LOW_BYTE 0x04 #define THRESH_HIGH 0x05 #define THRESH_LOW 0x06 #define THRESH_TIMER 0x07 // end definition of slave addresses for MAX44009 extern float SCALE_FACTOR; // captures scaling factors to map from % brightness to PWM float currentBright_pct; // the current screen brightness, in % of maximum float desiredBright_pct; // the desired screen brightness, in % of maximum float stepSize; // the step size to use to go from the current // brightness to the desired brightness uint8 lightReadingCounter; /** * Function: SetPWMDutyCycle * * Arguments: uint16 dc - desired duty cycle * * Returns: none * * Description: Sets the duty cycle of a 16-bit PWM, assuming that in this * architecture, 0x0000 = 0% duty cycle * 0x7FFF = 50% and 0xFFFF = 100% **/ extern void SetPWMDutyCycle(uint16 dc); /** * Function: I2C_WriteByte * * Arguments: uint8 slaveAddr - address of the slave device * uint8 command - destination register in slave device * uint8 data - data to write to the register * * Returns: ACK bit * * Description: Performs necessary functions to send one byte of data to a * specified register in a specific device on the I2C bus **/ uint8 2C_WriteByte(uint8 slaveAddr, uint8 command, uint8 data); /** * Function: I2C_ReadByte * * Arguments: uint8 slaveAddr - address of the slave device * uint8 command - destination register in slave device * uint8 *data - pointer data to read from the register * * Returns: ACK bit * * Description: Performs necessary functions to get one byte of data from a * specified register in a specific device on the I2C bus **/ uint8 I2C_ReadByte(uint8 slaveAddr, uint8 command, uint8* data); /** * Function: getPctBrightFromLuxReading * * Arguments: float lux - the pre-computed ambient light level * * Returns: The % of maximum brightness to which the backlight should be set * given the ambient light (0 to 1.0) * * Description: Uses a function to map the ambient light level to a backlight * brightness by using a predetermined function **/ float getPctBrightFromLuxReading(float lux); /** * Function: mapPctBrighttoPWM * * Arguments: float pct * * Returns: PWM counts needed to achieve the specified % brightness (as * determined by some scaling factors) **/ uint16 mapPctBrighttoPWM(float pct); /** * Function: getLightLevel * * Arguments: n/a * * Returns: the ambient light level, in lux * * Description: Reads both the light registers on the device and returns the * computed light level **/ float getLightLevel(void); /** * Function: stepBrightness * * Arguments: n/a * * Returns: n/a * * Description: This function would be called by an interrupt. It looks at the * current brightness setting, then the desired brightness setting. * If there is a difference between the two, the current brightness * setting is stepped closer to its goal. **/ void stepBrightness(void); /** * Function: timerISR * * Arguments: n/a * * Returns: n/a * * Description: An interrupt service routine which fires every 100ms or so. This * handles all the ambient light sensor and backlight * control code. **/ void timerISR(void); void main() { SetupMicro(); // some subroutine which initializes this CPU I2C_WriteByte(MAX44009_ADDR, CONFIG_REG, 0x80); // set to run continuously lightReadingCounter = 0; stepSize = .01; currentBright_pct = 0.5; desiredBright_pct = 0.5; SetPWMDutyCycle(mapPctBrighttoPWM(currentBright_pct)); InitializeTimerInterrupt(); // set this to fire every 100ms while(1) { // do whatever else you need here, the LCD control is done in interrupts Idle(); } } // main routine // the point at which the function clips to 100% #define MAXIMUM_LUX_BREAKPOINT 1254.0 float getPctBrightFromLuxReading(float lux) { if (lux > MAXIMUM_LUX_BREAKPOINT) return 1.0; else return (9.9323*log(x) + 27.059)/100.0; } // getPctBrightFromLuxReading uint16 mapPctBrighttoPWM(float pct) { return (uint16)(0xFFFF * pct * SCALE_FACTOR); } // mapPctBrighttoPWM float getLightLevel(void) { uint8* lowByte; uint8* highByte; uint8 exponent; uint8 mantissa; float result; I2C_ReadByte(MAX44009_ADDR, HIGH_BYTE, highByte); I2C_ReadByte(MAX44009_ADDR, LOW_BYTE, lowByte); exponent = (highByte & 0xF0) >> 4;// upper four bits of high byte register mantissa = (highByte & 0x0F) << 4;// lower four bits of high byte register = // upper four bits of mantissa mantissa += lowByte & 0x0F; // lower four bits of low byte register = // lower four bits of mantissa result = mantissa * (1 << exponent) * 0.045; return result; } //getLightLevel void stepBrightness(void) { // if current is at desired, don't do anything if (currentBright_pct == desiredBright_pct) return; // is the current brightness above the desired brightness? else if (currentBright_pct > desiredBright_pct) { // is the difference between the two less than one step? if ( (currentBright_pct-stepSize) < desiredBright_pct) currentBright_pct = desiredBright_pct; else currentBright_pct -= stepSize; } // else if else if (currentBright_pct < desiredBright_pct) { // is the difference between the two less than one step? if ( (currentBright_pct+stepSize) > desiredBright_pct) currentBright_pct = desiredBright_pct; else currentBright_pct += stepSize; } // else if SetPWMDutyCycle(mapPctBrighttoPWM(currentBright_pct)); return; } // stepBrightness void timerISR(void) { float lux; float pctDiff; stepBrightness(); if (lightReadingCounter) lightReadingCounter--; else { lightReadingCounter = 20; // 2 second delay lux = getLightLevel(); desiredBright_pct = getPctBrightFromLuxReading(lux); pctDiff = abs(desiredBright_pct - currentBright_pct); stepSize = (pctDiff <= 0.01) ? 0.01:pctDiff/10; } // else ClearInterruptFlag(); } // timerISR
全部0条评论
快来发表一下你的评论吧 !