EDA/IC设计
EMC测试光导传输设备的设计
依据项目要求,研制一种用于测试飞机内部电磁环境相关信号和电源线上产生的干扰发射电平电磁辐射的设备。低频模拟信号光传输设备采用光电转换技术,加上相应的控制逻辑,与频谱分析仪结合使用,可精确测定飞机内部真实的电磁模拟信号。
1 EMC测试光导传输设备的设计
飞机内部有许多辐射源,会在相关信号线和电源线上产生干扰发射电平,为确保飞机内部各机载设备之间能互不干扰地正常工作,在设计EMC测试光传输设备时,不仅需要采用高精度的A/D芯片以精确测试出其电磁信号,用于评估飞机电子系统、内部设备及互连电缆对电磁辐射的承受能力,还要保证被测的电磁信号在传输到频谱分析仪的过程中不被飞机内部电磁环境所干扰,所以需要把采集到的电磁信号转变为光信号进行传输,通过使用光纤传输,以完全避免电磁辐射信号的干扰,确保被测电磁信号的准确性,并提高设备的可靠性。
2 设备的构成和结构框图
EMC测试低频光导传输设备由光发送单元和光接收单元组成。光发送单元由背板、控制板(包括电源单元、测试信号发生器单元及控制威廉希尔官方网站 单元)、 1OMHz通道发送板(2通道)以及1MHz通道发送板(6通道)组成;光接收单元由背板(包括电源单元、IEEE488接口单元)、10MHz通道接收板(2通道)以及1MHz通道接收板(6通道)组成。如图1所示。
3 EMC测试低频模拟信号光传输设备的实现
3.1 1 MHz模拟光通道设计
EMC测试低频光导传输设备1MHz模拟光通道包含6个低频模拟信号光传输通道,6个低频传输通道的信号频带为100Hz~1MHz,采用1550nm单纵模DFB激光器和AM直接强度调制技术,通过6芯单模光纤传输,原理框图如图2、图3所示。
其原理是将100Hz~1MHz的低频模拟信号直接调制在高性能激光器上,调制成光强随信号幅度变化的激光,通过光纤进行长距离传输;接收端通过PIN光电探测器检测和宽带低失真运放的放大,将光信号还原为电信号。这种模拟光传输方式通过对器件的优选保证设备具有较高的信噪比和较低的失真度。
3.2 1 OMHz模拟光通道设计
2路10MHz模拟光传输通道的信号频带为DC~10MHz,采用模数一数模的全数字调制方式,在单芯单模光纤中以1 3 1 Onm波长激光传输。发送时对2个模拟传输通道高速采样,进行A/D转换,通过光电转换威廉希尔官方网站 ,再复用到一根光纤上传输;反之,接收时,首先对从光纤上来的高速数字信号解复用成数字信号,进行D/A转换,还原成模拟信号。图4和图5为10MHz通道的原理框图。由于10 MHz通道的传输信号频率已经比较高,为保证信号质量,本方案的2个10 MHz通道均采用8位A/D、D/A转换器,采样速率为6O MHz,理论上10 MHz通道的信噪比SNR≈(6.02N+1.76)dB,可达48dB(用户要求为36dB)。
3.3 控制威廉希尔官方网站 设计
根据设备功能的要求,EMC测试低频模拟信号光导传输设备的光接收机提供IEEE-488接口,EMC站主控系统通过IEEE-488接口对 EMC测试低频模拟信号光传输设备发控制命令,光接收机则通过专用控制光纤将控制命令传至发送端(位于测试现场)。综合上述要求,设计EMC测试低频模拟信号光传输设备的发送端和接收端之间一共需要三根光纤,分别用于传输10MHz信号(已经数字化并2路复用一根光纤)、1MHz信号(已经数字化并6路复用一根光纤)及控制信号(本设备的控制信号为R8232数据)。
3.4 抗干扰设计
EMC测试低频模拟信号光导传输设备为了精确测定飞机内部真实的电磁辐射信号,所以提高设备的抗电磁干扰能力尤为重要,为此,主要考虑以下方面:光发送部分和光接收部分的机箱内要四周密封,内部采用金属隔离物以避免电磁干扰。发送端的AM激光器和接收端的PIN光电探测器也通过金属围栏与控制威廉希尔官方网站 相隔离,通过内部隔板的电气连线都经滤波电容过滤。在电源抗干扰方面必须把数字电源和模拟电源分开,避免数字信号干扰模拟信号。同时,优异的去耦和出色的滤波也是降低噪声的有效途径,常用的做法是在电源输入和输出管脚加去耦电容和旁路电容,去耦电容使电源模块去除交流成分后的直流,使得瞬态电流可以回流到地;旁路电容能消除高频辐射噪声和抑制高频干扰。
4 结语
本文采用光强直接调制和光电转换技术,同时结合频谱分析仪实现了对飞机内部低频电磁辐射信号的准确测试,其技术实用而且可靠,通过实践检验,该设备不仅可用于对飞机内部的电磁测试,还可以用到其他的电磁环境测量中,应用前景广泛。
全部0条评论
快来发表一下你的评论吧 !