最近,几乎所有科技公司都以自己用某种形式的机器学习来吸引风险基金或者合作伙伴。但是对于那些尝试在医疗健康中使用人工智能的公司,风险是相当的大,这就意味着炒作人工智能概念结合医疗健康的公司,相较于那些真正专注在算法技术研究的公司,在这个行业中更加容易被淘汰
2012年,该地区的交易规模从之前的不到20家增至近70家,最近的一项调查显示,超过一半的医院计划在5年内采用人工智能,其中35%的计划在两年内完成。在波士顿,Partners HealthCare刚刚宣布与通用电气公司(GE HealthCare)开展为期10年的合作,将深度学习技术整合到他们的网络中。人工智能的应用远不止改善临床工作流程和加快处理索赔那么简单。
“我们正在努力解决的问题是生产力的问题,”联邦医疗保险和医疗补助中心的前代理局长安迪·斯拉维特说,在上周召开的为期两天的会议上,斯坦福大学(Stanford University)的首席执行官、卫生保健IT专家、政策制定者和医生齐聚一堂:“我们需要用更少的资源照顾更多的人,但如果我们只顾追逐太多的问题和商业模式,或者尝试发明新的小工具,那就不会改变生产率。”这就是数据和机器学习所要解决的问题。
接受医院调查的受访者表示,这项技术可能对人口健康、临床决策支持、诊断工具和精准医学产生最大影响。即使是药物开发,现实世界的证据收集和临床试验,在人工智能的帮助下也会变得更快、更便宜、更准确。但是,把我们所有的信心都放在AI上的时代还没有到来。
▍科技巨头抢占医疗高地
所以每个人都想拥抱人工智能,但是我们多久才能看到所谓的机器学习中的医疗保健改革呢?最近,以自然语言处理或强大的图像识别算法来处理这些几十年的医学研究数据的方式越来越多,涵盖最直接的应用到最复杂的诊断任务。
像医疗保健领域中的其他技术一样,人工智能首先需要建立关键医疗数据,这方面存在严重限制的问题。但是,这并没有阻止创新,数字健康的利益攸关者意识到,完全解开AI的真实潜力需要有战略伙伴关系,有质量的数据,还要有对统计数据的清醒理解。
随着人工智能在医疗保健领域的成熟,科技领域的大公司并没有回避行业创新带来的巨大挑战,比如监管障碍、对质量数据的法律访问以及缺乏互操作性的持续问题。就在这个星期,谷歌宣布,它已经开启了自己在医疗保健领域的尝试和真正的消费级机器学习能力。谷歌大脑与斯坦福大学(Stanford)、加州大学旧金山分校(University ofCalifornia San Francisco)展开合作,从数百万名患者那里获得识别数据。
正如谷歌首席执行官桑达尔·皮查(SundarPichai)上周在谷歌的I / O开发者大会上所解释的那样,这还不止于此。去年,他们推出了张量计算中心,称这个中心为ai- first数据中心。
皮查说:“在谷歌,我们把所有人关于人工智能的努力都投入到Google 。 AI。这是大家共同的努力并且公司所有的团队都致力于将人工智能的好处带给每个人。“人工智能将专注于三个领域:研究、工具和基础设施,以及人工智能应用。
去年11月,谷歌的研究人员在JAMA发表了一篇论文,表明谷歌的深度学习算法在一组大数据的基础上,可以检测到糖尿病视网膜病变,准确率超过90%。皮查说,他们希望能应用人工智能的另一个领域是病理学。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !