您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

基于离散量改进k-means初始聚类中心选择的算法

大小:0.40 MB 人气: 2017-11-20 需要积分:0

  传统kmeans算法由于初始聚类中心的选择是随机的,因此会使聚类结果不稳定。针对这个问题,提出一种基于离散量改进k-means初始聚类中心选择的算法。算法首先将所有对象作为一个大类,然后不断从对象数目最多的聚类中选择离散量最大与最小的两个对象作为初始聚类中心,再根据最近距离将这个大聚类中的其他对象划分到与之最近的初始聚类中,直到聚类个数等于指定的足值。最后将这是个聚类作为初始聚类应用到k -means算法中。将提出的算法与传统k-means算法、最大最小距离聚类算法应用到多个数据集进行实验。实验结果表明,改进后的k-means算法选取的初始聚类中心唯一,聚类过程的迭代次数也减少了,聚类结果稳定且准确率较高。

 

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!