您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

激光散乱点云K最近邻搜索算法

大小:1.09 MB 人气: 2017-12-11 需要积分:3

  针对激光散乱点云的数据量大,且具有面型的特点,为降低存储器使用量,提高散乱点云的处理效率,提出了一种散乱点云K最近邻(KNN)搜索算法。首先,利用多级分块、动态链表的存储方式,只存储非空的子空间编号。对相邻子空间进行3进制编码,利用编码的对偶关系,建立相邻子空间之间的指针连接,构造出包含KNN搜索所需的各类信息的广义表,然后再搜索KNN。KNN搜索过程中,在计算被测点到候选点距离时,直接删除筛选立方体内切球之外的点,可将参入按距离排序的候选点数减少为现有算法的一半。依赖K值和不依赖K值的分块原则,均可计算不同的K邻域。实验结果表明,该算法不仅具有低的存储器使用量,而且具有较高的效率。

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!