电子说
带宽是大多数工程师选择示波器时首先考虑的技术指标。如图下所示,所有示波器都会在较高频率时出现低通频率响应衰减。大多数带宽技术指标在 1 GHz 及以下的示波器通常会出现高斯响应,并在 -3 dB 频率的三分之一处表现出缓慢下降特征。
而带宽技术指标大于 1 GHz 的示波器通常拥有最大平坦频率响应。这类响应通常在 -3 dB 频率附近显示出具有更尖锐下降特征、更为平坦的带内响应(如下图所示)。
示波器的频率响应各有其优缺点。具有最大平坦度响应的示波器衰减带内信号的数量少于具有高斯响应的示波器,这表明前者能够更精确地测量带内信号。具有高斯响应的示波器衰减带外信号的数量少于具有最大平坦度响应的示波器,这表明在相同的带宽技术指标下,前者拥有更快的上升时间。有时,将带外信号衰减到更高的程度有助于消除会造成采样混叠的高频率分量,从而达到 Nyquist 标准(fS > 2 x fMAX)。
无论示波器具有高斯响应、最大平坦度响应或介于二者之间的响应,输入信号衰减 3 dB 所在的最低频率称为示波器的带宽。使用正弦波信号发生器,在扫描频率上测试示波器的带宽和频率响应。信号 -3 dB 频率处衰减约为 -30% 幅度误差。所以当信号的主要频率接近示波器的带宽时,很难对信号进行非常精确的测量。与示波器的带宽技术指标有极大关系的还有示波器的上升时间技术指标。示波器具有高斯型响应时,按照 10% 至 90% 标准,其上升时间大约为 0.35/fBW。对于具有最大平坦度响应的示波器,其上升时间技术指标的范围通常在 0.4/fBW 左右,取决于频率下降特征的尖锐程度。切记,示波器的上升时间并不是示波器可以精确测量的最快边沿速度。假定输入信号具有理论上无限快的上升时间(0 ps),示波器的上升时间是示波器可能产生的最快边沿速度。虽然这个理论上的技术指标是不可测量,这是因为脉冲发生器实际上不能生成无限快的边沿,但可以通过输入边沿速度比示波器上升时间技术指标快 3 到 5 倍的脉冲信号,以测量示波器的上升时间。
●数字应用需要的带宽
根据以往经验,示波器带宽应比被测系统的最快数字时钟速率至少快5 倍。如果示波器满足这一标准,则其能够捕捉高达 5 次的谐波,并实现最小的信号衰减。这个信号分量对于确定数字信号的总体波形非常重要。但是如果需要对高速边沿进行精确测量,那么此一次方程式不会考虑快速上升沿和下降沿中嵌入的实际最高频分量。
若要确定所需的示波器带宽,有一种更精确的方法,即确定数字信号中出现的最高频率,而不是最大时钟速率。最高频率将由设计中的最快边沿速度决定。所以要做的第一件事就是确定最快信号的上升时间和下降时间。通常可以从设计所用器件的公开技术指标中获得这一信息;对于上升时间按照 10% 至 90% 准则计算的信号,fknee 等于 0.5除以信号的上升时间。对于上升时间按照 20% 至 80% 准则计算的信号(这在当前许多器件技术指标中十分常见),fknee 等于 0.4除以信号的上升时间。不要将这些上升时间与示波器技术指标中的上升时间相混淆;最后根据在测量上升时间和下降时间时希望达到的精度,确定测量信号所需要的示波器带宽。下表列出了决定示波器(具有高斯频率响应或最大平坦度频率响应)测量精度的多个乘积系数。请记住,大多数带宽技术指标为 1 GHz 及以下的示波器通常具有高斯型响应,而大多数带宽高于 1 GHz 的示波器具有最大平坦度型响应。
要求的精度 | 高斯响应 | 最大平坦度响应 |
20% | fBW = 1.0 x fknee | fBW = 1.0 x fknee |
10% | fBW = 1.3 x fknee | fBW = 1.2 x fknee |
3% | fBW = 1.9 x fknee | fBW = 1.4 x fknee |
举例:通过近似高斯频率响应测量 500 ps 上升时间(10-90%)确定示波
器的最小必需带宽。如果信号具有近似 500 ps 的上升/ 下降时间(基于 10% 至 90%标准),那么信号中的最大实际频率分量(fknee)将大约等于 1GHz。
如果在对信号进行实际的上升时间和下降时间测量时,能够容忍最多 20%
的计时误差,那么可以使用 1 GHz 带宽示波器用于数字测量应用;但是如果需要 3% 左右的计时精度,则最好使用2 GHz 带宽的示波器。
●模拟应用需要的带宽
大部分示波器厂商都建议选择带宽比最大信号频率至少高 3 倍的示波器。虽然这个“3X”倍数不适用于数字应用,但是对模拟应用(例如调制射频)来说还是适合的。但这个建议仅适用于在较低频段中具有相对平坦的频率响应的示波器。
全部0条评论
快来发表一下你的评论吧 !