0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

TinyML推动深度学习和人工智能发展

姚小熊27 来源:TechWeb.com.cn 作者:TechWeb.com.cn 2020-11-03 14:58 次阅读

TinyML是深度学习人工智能领域的最新技术。它带来了在随处可见的微控制器(几乎是最小的电子芯片)中运行机器学习模型的能力。

微控制器是我们每天使用的许多设备的大脑。从电视遥控器到电梯再到智能扬声器,它们无处不在。可以发射遥测数据的多个传感器连接到微控制器。执行器,例如开关和电动机,也连接到同一微控制器。它带有嵌入式代码,可以从传感器获取数据并控制执行器。

TinyML的兴起标志着终端用户消费人工智能方式的重大转变。来自硬件和软件行业的供应商正在合作将人工智能模型引入微控制器。

在电子设备中运行复杂的深度学习模型的能力开辟了许多途径。TinyML不需要边缘、云或互联网连接。它在同一个微控制器上本地运行,该微控制器具有管理连接的传感器和执行器的逻辑。

TinyML的演变

第1阶段-云中的AI

在AI的早期,机器学习模型是在云中训练和托管的。运行AI所需的强大计算能力使云成为理想的选择。开发人员和数据科学家利用高端CPUGPU训练模型,然后托管它们以进行推理。每个消耗AI的应用程序都与云对话。该应用程序将与微控制器通信以管理传感器和执行器。

第二阶段-边缘人工智能

虽然云仍然是人工智能的逻辑家园,但它确实在消耗深度学习模型的同时引入了延迟。想象一下,每次与智能扬声器通话时,请求都会被云处理。往返行程中的延误扼杀了体验。其他场景,如工业自动化、智能医疗、联网车辆等,都要求人工智能模型在本地运行。

边缘计算(云和本地物联网设备之间的管道)已成为在本地托管AI模型的理想选择。在边缘运行的AI不会遭受在云中运行相同AI所带来的延迟。

但是,鉴于边缘资源有限,培训和再培训模型仍然需要云。可以在边缘托管经过训练的模型,以进行推理(使用机器学习模型的过程),而不用于训练。因此,在云中训练模型并将其部署在边缘变得很普遍。这种方法提供了两全其美的优势-用于训练的强大计算环境(云)和用于推理的低延迟托管环境(边缘)。

在边缘使用AI时,微控制器从连接的传感器获取遥测,然后将遥测发送到本地部署的模型以通过应用程序进行推理。然后,模型返回输入数据的预测或分类,用于确定后续步骤。

阶段3-微控制器中的AI

虽然在许多情况下在边缘运行AI是一个完美的解决方案,但是在某些情况下,部署边缘计算层是不切实际的。例如,将诸如智能扬声器和遥控器之类的消费类设备连接到边缘是过大的选择。这增加了设备的总拥有成本和供应商的支持成本。但是这些消费类设备是注入AI功能的温床。

工业场景中,预测性维护已成为设备的重要组成部分。昂贵的机械设备需要嵌入能够实时检测异常的机器学习模型,以提供预测性维护。通过主动检测故障,客户可以节省数百万美元的维护成本。

直接在微控制器中嵌入AI成为消费和工业物联网场景的关键。这种方法不依赖于外部应用程序,边缘计算层或云。AI模型与嵌入到微控制器的嵌入式代码一起运行。它成为提供无与伦比的速度的整体逻辑的组成部分。

传统上,机器学习模型始终部署在资源丰富的环境中。由于TinyML模型可以嵌入微控制器中,因此它们不会占用大量资源。这种方法是将AI注入物联网设备的最有效,最具成本效益的方法。

TinyML不断发展的生态系统

尽管TinyML尚处于起步阶段,但正在形成一个充满活力的生态系统。电子芯片和物联网套件制造商(例如Adafruit,联发科技,Arduino和STM)正在其设备中支持TinyML。微软的Azure Sphere(安全微控制器)也可以运行TinyML模型。TensorFlow Lite是流行的开源深度学习框架的变体,可以移植到支持的设备上。另一个开源机器学习编译器和运行时Apache TVM也可以用于将模型转换为TinyML。

Always AI、Cartesiam、EdgeImpulse、OctoML和Queexo等新兴的AutoML和TinyML平台正在构建工具和开发环境,以简化针对微控制器的训练和优化模型的过程。

TinyML使AI无处不在,并可供消费者使用。它将为我们每天使用的数百万种设备带来智能。
责任编辑:YYX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 微控制器
    +关注

    关注

    48

    文章

    7566

    浏览量

    151608
  • 人工智能
    +关注

    关注

    1792

    文章

    47409

    浏览量

    238919
  • 机器学习
    +关注

    关注

    66

    文章

    8424

    浏览量

    132764
  • 深度学习
    +关注

    关注

    73

    文章

    5507

    浏览量

    121266
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    人工智能的结合,无疑是科技发展中的一场革命。在人工智能硬件加速中,嵌入式系统以其独特的优势和重要性,发挥着不可或缺的作用。通过深度学习和神
    发表于 11-14 16:39

    LLM技术对人工智能发展的影响

    随着人工智能技术的飞速发展,大型语言模型(LLM)技术已经成为推动AI领域进步的关键力量。LLM技术通过深度学习和自然语言处理技术,使得机器
    的头像 发表于 11-08 09:28 423次阅读

    人工智能、机器学习深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2507次阅读
    <b class='flag-5'>人工智能</b>、机器<b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>存在什么区别

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和技术原理。这使得我对
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 在阅读这一章后,我对未来生命科学的发展充满了期待。我相信,在人工智能技术的推动下,生命科学将取得更加显著的进展。例如,在药物研发领域,AI技术将帮助
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习深度学习、神经网络等。这些技术构成了AI for Science的基石,使得AI能够处理和分析复杂的数据集,从而发现隐藏在数据中的模式和规
    发表于 10-14 09:16

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。在阅读这一章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的学习
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着人工智能技术的不断发展
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    每个交叉领域,本书通过案例进行了详尽的介绍,梳理了产业地图,并给出了相关政策启示。 《AI for Science:人工智能驱动科学创新》适合所有关注人工智能技术和产业发展的读者阅读,特别适合材料科学
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    ,得到了华为、腾讯、优必选、中煤科工、中国联通、云天励飞、考拉悠然、智航、力维智联等国内人工智能企业的深度参与和大力支持。 报名后即可到现场领取礼品,总计5000份,先到先选! 点击报名:https://bbs.elecfans.com/jishu_2447254_1
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能
    发表于 07-29 17:05

    人工智能、机器学习深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning,
    的头像 发表于 07-03 18:22 1329次阅读

    人工智能深度学习的五大模型及其应用领域

    随着科技的飞速发展人工智能(AI)技术特别是深度学习在各个领域展现出了强大的潜力和广泛的应用价值。深度
    的头像 发表于 07-03 18:20 4684次阅读

    人工智能和机器学习的顶级开发板有哪些?

    机器学习(ML)和人工智能(AI)不再局限于高端服务器或云平台。得益于集成威廉希尔官方网站 (IC)和软件技术的新发展,在微型控制器和微型计算机上实现机器学习算法和
    的头像 发表于 02-29 18:59 851次阅读
    <b class='flag-5'>人工智能</b>和机器<b class='flag-5'>学习</b>的顶级开发板有哪些?

    嵌入式人工智能的就业方向有哪些?

    于工业、农业、医疗、城市建设、金融、航天军工等多个领域。在新时代发展背景下,嵌入式人工智能已是大势所趋,成为当前最热门的AI商业化途径之一。
    发表于 02-26 10:17