0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AWS如何重塑机器学习

姚小熊27 来源:人工智能实验室 作者:人工智能实验室 2021-01-10 09:42 次阅读

在2019年的re:Invent大会上,当亚马逊AWS首席执行官Andy Jassy进行主旨演讲时,他意识到有关机器学习的内容简直太多了,仅仅这一部分就花了差不多75分钟。

时间宝贵,但内容更加重要,这促使AWS在一年后做出调整,在长达三周的re:Invent 2020上,机器学习单独拿出来成为内容担当。AWS机器学习副总裁Swami Sivasupamanian亲自登台讲解,美国IT媒体 SiliconANGLE评价,AWS发布的信息和一系列发布,“加强了其在机器学习领域的庄重承诺。”

机器学习不再“空中楼阁”

用Swami Sivasupamanian本人的话来评价机器学习,它就是“我们这一代人将遇到的最具破坏性的技术之一。”这句话,在整个2020年都已经被证实。

例如,疫情之下,零售商家试图通过线上各个渠道拓展销量,快速成为制胜法则。达美乐披萨使用机器学习进行订单管理,在客户下单仅10分钟左右之后,就能够提供新鲜的披萨。

而在医疗领域,机器学习运用的一个典型的应用场景是,医生用其来帮助判别病患脑部供血的状况或是癌症发展的状况,这种行话被称为“读片”的操作,正极大地改善和辅助医院的工作流程。

按照AWS公布的数据,接入并使用AWS机器学习服务的客户已经超过10万家,其中包括起亚、雅马哈、美国宇航局、普华永道等,不同行业不同机构的用户,正在把自己的数据交给机器学习来分析。

“机器学习就是工具,越来越多的行业用户开始使用工具,去更多地帮到他们的业务。” 在面向媒体和分析师的沟通会上,AWS大中华区云服务产品管理总经理顾凡如此解释,机器学习迅速渗透,是因为企业发现新工具有用且好用。

具体到AWS层面,不断夯实技术,简化机器学习难度就是一直以来的主题,其中必须遵循的理念是:将机器学习交到更多应用程序开发者和终端用户手中,而他们无需机器学习经验;让更多开发者应用机器学习,创造更好的终端用户体验。

技术领先,产品以用户为本,使用者自然纷至沓来。AWS公布的数据显示,目前92%的基于Tensorflow框架的机器学习工作负载,91%的基于PyTorch框架的工作负载都跑在AWS云上。在一系列云服务商中,AWS体现了绝对优势。

总结AWS在机器学习上一直以来的努力,顾凡认为,工具库上的深度和广度、开放心态以及一些必要的服务原则,是AWS被越来越多开发者和客户信任的原因。

首先,机器学习是一个“Right tools for the right job”的事情,顾凡称 “你希望运行什么样的工作,在什么样的场景下,应该选择工具箱中什么样的工具最适合。” 也就是一把钥匙开一把锁,合适的工具做合适的事儿。而AWS在机器学习服务上深度和宽度,能满足用户的不同需求。

其次,AWS力求采取开放包容的工具选择策略,让云端可以和客户的整个环境做到良好的集成。不仅是机器学习框架和接口标准,在AI芯片选型、计算实例上,也可以让用户根据应用的不同场景,自由选择。简单来说,让开发者自行选择最具成本效益的云基础架构。

不过,机器学习的一个关键是“Know-How”(专业知识),同时要实现解决方案的产品化。但这并不容易,因为人才奇缺,有时候,懂技术的人往往不懂业务,懂业务的人往往不懂技术。对此,AWS有必要向客户“授人以渔”,为客户赋能。

“当客户真正在工程方面有差距的时候,在产品原型实现方面需要帮忙的时候,我们会把客户扶上马再送一程,真正帮他/她快速地把一些业务难题,先用产品原型的方式把它实现出来。”顾凡说。

最终,在用户不断的机器学习实践中,复杂的“数据分析”及“AI计算”需求将持续爆发,专业的云计算服务商和数字化技术服务商价值将被快速释放。

自下而上

AWS在这次re:Invent陆续发布了基于英特尔Habana AI加速芯片的实例、Amazon Kendra企业搜索、Amazon CodeGuru自动代码审核、Amazon Fraud Detector自动欺诈检测等功能和服务,也借此更进一步打牢基础设施,拓展企业商用市场,从云端到边缘,实现对企业日常任务的重塑和改进。

长期观察AI技术的IT专家们不难发现,在洞悉机器学习的核心驱动力后,这些功能发布背后的逻辑就已经自然显现了。它是自下而上的。

首先是基础设施。

一个现象是,云计算厂商们在技术研发上的投入已经不局限于基本的云技术本身,还投向了芯片、开发框架、边缘计算、数据库核心软件等等。对于任何全栈云计算厂商而言,这些投入已经不可或缺。但从机器学习的角度来看,用AWS的话来总结,它们是打牢平台能力的坚实基矗

例如,AWS在这次re:Invent上推出机器学习训练芯片AWS Trainium,与标准的GPU实例相比,可带来30%的数据吞吐量提升,并降低45%的单次引用成本。此外,AWS Trainium和AWS的机器学习推理芯片AWS Inferentia在SDK上保持一致。

值得一提的是,当Habana芯片进入AWS云服务的时候,被英特尔视为一次在云计算市场上对英伟达的重要胜利。实际上,真正的胜利者属于AWS的用户们,根据AWS测试显示,Habana对机器学习任务这类云服务的性价比,能比目前基于GPU的云服务高40%。

无论英伟达GPU或英特尔Habana芯片,还是AWS自研机器学习芯片,在AWS上都永远是可选项。一方面,客户选择无比丰富,远远超过AWS的所有竞争对手。另一方面,当AWS选择追求极致时,大幅降低机器学习成本的畅想又让客户无法拒绝。

“如果只是依赖合作伙伴,很难把(机器学习)性价比做到极致,这也是我们一再强调AWS Trainium和AWS Inferentia两款芯片的原因,一个是机器学习训练里面的性价比的极致,一个是推理里面的性价比极致。” 顾凡说,AWS手握市面上绝大多数芯片,可任企业自由选择。“但回到合作伙伴的关系上,无论是英特尔还是英伟达,一定有不一样的场景对客户选择是合适的,其中我们不会干预客户的选择。”

对于大多数机器学习用户来说,AWS的 Amazon SageMaker是目前机器学习配置效率和性价比最高的选择。

Amazon SageMaker是面向机器学习开发者的集成开发环境和完全托管服务。它依托多项工具,化繁为简,使开发人员和数据科学家能够从根本上更轻松、更快速地构建、训练和部署机器学习模型,并降低成本。自2017年发布了SageMaker以来,SageMaker在机器学习开发者之间极受欢迎,成为AWS手中的机器学习大杀器。

反馈到业务上,一些客户发现,SageMaker“指导”下机器学习带来的业务增长,就有点像是魔法了。

比如拉丁美洲在线食品配送公司iFood,每月订单达 3060 万份,在超过 1000 个城市中注册了约 160000 家餐厅。iFood首席数据科学家Sandor Caetano表示,通过Amazon SageMaker,一方面,使用机器学习来改善顾客和餐厅的体验,让商家和商品推荐更加智能和个性化。另一方面,体现在物流上的成绩则是,由于路线优化,配送人员的行程缩短了 12%。

而美国职业橄榄球大联盟 (NFL) 则是体育运动中使用机器学习技术的先锋,一方面,体育赛场天然是数据产生的高发地,选手和教练需要数据来指导赛场决策,这是赛事需要;另一方面,将掌握的数据运用到实况转播中,提升观赛的沉浸感,这是商业需求。为此,NFL创建了名为Next Gen Stats (NGS) 的程序来采集数据。

关键在于,如何运用这些宝贵的数据?美式橄榄球数据公司Pro Football Focus CEO、NBC体育解说员Cris Collinsworth就曾告诉界面新闻,“我们过去总让老派、学界的人来为体育赛事出主意,而教练则通过比赛录像来分析和指导运动员。”但效率之低下显而易见。

最终NFL选择与AWS合作,因为机器学习进入体育,意味着“思维方式的变化”,在效率和成本上均更优。借助SageMaker,可以更快速有效地给出数据分析结果。一个例子是,当NFL构建、训练和运行这些预测模型时,时间从 12 小时缩短到 30 分钟。

甚至比赛观赏性也提高到一种从未达到过的程度。借助Amazon QuickSight商业智能工具,NFL 能够在内部获得更深入的见解,同时还为球迷提供了与数据互动的机会。俱乐部、广播公司的人可以针对比赛,在面板上提问查询,并极快地获得回答。

来自客户惊喜的反馈并不让Swami Sivasupamanian意外,“SageMaker可以说是在AWS历史上发展最快的一个云服务。”他提到,在过去一年中AWS已经发布了超过50个SageMaker功能,目的就是让客户使用机器学习的过程更为容易。

回顾AWS在本次大会上SageMaker的功能发布,无论是数据特征提取器Data Wrangler,数据特征存储库Feature Store,还是自动化工作流Pipelines,都和Swami Sivasupamanian提出的降低机器学习难度的宗旨毫无偏离,甚至多数时候,还会让客户感到惊喜。

比如Data Wrangler,其内置了300多个数据转换器,让客户无需编写任何代码,就可以将机器学习用到的特征进行规范化、转换和组合,被称为“准备机器学习数据的最快、最简单的方法”。Pipelines是第一个专为机器学习构建的、方便易用的持续集成和持续交付服务。另外,大型复杂深度学习模型的分布式训练,可以将训练速度提升两倍。

不难发现,在AWS的努力下,SageMaker正在朝两个方向的迭代:一方面,机器学习每一个步骤做得越来越细、做得越来越易用;然后,将复杂机器学习的工作流给串联起来。比如,Data Wrangler的数据准备工作流程就可以与 Amazon SageMaker Pipelines 无缝集成,以便用户自动执行模型部署和管理。

这种串联和无缝集成一定程度上令人着迷,也为开发者打开了“新世界”。“实际上机器学习的工作流是可以被组织的,因为机器学习的流程中,要么有些步骤是串行的,一步一步走,要么有些步骤在某个环境下是可以并行的,但是它都可以被组织、被编排的。”顾凡说。

丰富且友好的机器学习工具在一定程度上加强了AWS上的用户粘性。相比于其他平台,AWS的机器学习工具链更加完善可靠,这意味着当用户考虑使用机器学习时,AWS总会在各种云服务可选项中脱颖而出。
责任编辑:YYX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8420

    浏览量

    132682
  • AWS
    AWS
    +关注

    关注

    0

    文章

    432

    浏览量

    24382
收藏 人收藏

    评论

    相关推荐

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统机器
    的头像 发表于 12-30 09:16 142次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 110次阅读

    Arm与AWS合作深化,AWS Graviton4展现显著进展

    Arm与亚马逊云科技(AWS)的长期合作关系,一直致力于为云计算领域带来性能更强劲、更高效和可持续的解决方案。双方通过专用芯片和计算技术的结合,不断推动云计算的发展。 在近期举行的AWS re
    的头像 发表于 12-18 14:17 178次阅读

    什么是机器学习?通过机器学习方法能解决哪些问题?

    来源:Master编程树“机器学习”最初的研究动机是让计算机系统具有人的学习能力以便实现人工智能。因为没有学习能力的系统很难被认为是具有智能的。目前被广泛采用的
    的头像 发表于 11-16 01:07 418次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?通过<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法能解决哪些问题?

    NPU与机器学习算法的关系

    在人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和算法复杂度的提升,对计算资源的需求也在不断增长。NPU作为一种专门为深度学习机器
    的头像 发表于 11-15 09:19 470次阅读

    机器学习算法原理详解

    机器学习作为人工智能的一个重要分支,其目标是通过让计算机自动从数据中学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的机器学习
    的头像 发表于 07-02 11:25 1082次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习和深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器
    的头像 发表于 07-01 11:40 1404次阅读

    请问ESP32-WROVER-KIT如何通过AWS IoT Device Tester (IDT) 的测试?

    我们是一间台湾的公司(正文科技),目前使用 ESP32-WROVER-KIT 开发连接 AWS 的 IoT 产品,SDK 是 Amazon FreeRTOS。 AWS 要求我们通过 \"
    发表于 06-28 07:51

    通过在AWS发布命令,让io的电平状态上报给AWS,为什么上传的同时一模一样的数据在串口调试助手打印?

    我在平台上发布命令4.png 通过回调函数判断是否上报数据1.png 判断io的状态并把数据上传到AWS2.png 但为什么上传的同时一模一样的数据在串口调试助手打印? : esp32_switch
    发表于 06-20 06:09

    用按键来发布消息,AWS订阅消息,按键能用但就是在AWS平台上看不到信息,怎么解决?

    aws_root_ca_pem_start[] asm(\"_binary_aws_root_ca_pem_start\"); extern const uint8_t
    发表于 06-20 06:06

    esp32-C3连接AWS失败怎么解决?

    现在用例程编译,发现还是连接AWS失败?不懂怎么解决了
    发表于 06-19 06:23

    stm32 AWS云连接怎么使用?

    stm32 AWS云连接怎么使用,官方的扩展包看不明白
    发表于 04-01 07:21

    高效、安全、智能:机器人如何重塑行业内部物流上下料流程?

    高效、安全、智能:机器人如何重塑行业内部物流上下料流程? 机器人上下料AMR(自主移动机器人)的应用,为行业内部物流带来了革命性的改变。AMR以其高效、灵活和自动化的特点,极大地优化
    的头像 发表于 03-27 17:01 425次阅读
    高效、安全、智能:<b class='flag-5'>机器</b>人如何<b class='flag-5'>重塑</b>行业内部物流上下料流程?

    爱立信旗下Vonage与AWS推出新欺诈保护解决方案

    近日,爱立信旗下的全球云通信平台 Vonage 与亚马逊网络服务(AWS)达成重要合作。双方将结合 Vonage 基于通信 API 与网络 API 的平台、爱立信的 5G 网络能力以及 AWS 的广泛服务,通过 AWS Mark
    的头像 发表于 03-06 09:28 422次阅读

    如何使用TensorFlow构建机器学习模型

    在这篇文章中,我将逐步讲解如何使用 TensorFlow 创建一个简单的机器学习模型。
    的头像 发表于 01-08 09:25 997次阅读
    如何使用TensorFlow构建<b class='flag-5'>机器</b><b class='flag-5'>学习</b>模型