基于单个自适应神经元的非模型直接控制方法在汽车悬架系统中的应用

描述

一、前言

汽车悬架系统对车辆行驶平顺性、乘坐舒适性和操纵稳定性有很大影响。传统的被动悬架只能被动地存储和吸收外界能量,不能主动适应车载质量、轮胎刚度等车辆参数和路面激励的变化,大大制约了车辆性能的提高。主动悬架克服了传统被动悬架的诸多局限,使悬架系统对不同运行工况具有最大程度的适应能力。

由于悬架系统的模型参数往往不确定,路面激励未知且可变,研究开发出各种自适应控制策略应用于主动悬架控制,主要有模型参考自适应控制、自校正控制和神经网络自适应控制。文献提出了以理想天棚阻尼控制为参考模型的自适应控制策略,但在设计中需要选择一个合适的Lyapunov函数,这要求有一定的理论知识和实践经验,否则不易获得较好的自适应规律。文献的自校正控制需要首先在线估计模型参数或控制器参数,然后再综合控制律,是一种依赖于模型的解析设计方法,且比一般的常规控制器要复杂。文献采用神经网络间接自适应控制,充分利用神经网络在非线性处理和自学习、自适应方面的优势,但基于多层结构的神经网络结构相对复杂,又因采用了S型作用函数而计算量较大,在线调节权重用时较长,不宜于实时在线控制。

文献提出了一种基于单个自适应神经元的非模型直接控制方法。它的显著特点是无需进行系统建模,充分利用神经元的关联搜索和学习能力来实现控制目的。该控制器结构非常简单,运算量小,实时性好,控制品质优,对模型参数的变化和外界扰动具有较强的适应性和鲁棒性。自适应神经元控制已被成功应用于电力系统、汽车防抱制动系统、医疗药品注射系统等。作者针对汽车主动悬架,设计一个自适应神经元控制器,研究系统在随机路面激励下的减振效果,同时考察控制器在变参数条件下的鲁棒性。

二、主动悬架系统的动力学模型

 

神经网络

 

式中ms为车身质量,mt为簧下质量,ks为悬架弹簧刚度,b为悬架阻尼系数,kt为轮胎刚度,u为悬架系统的主动控制力,q、xs、xt分别为路面垂向输入位移、车身位移和簧下质量位移。

选取系统状态变量X、输入变量U和输出变量Y分别为

 

神经网络

 

三、自适应神经元控制器的设计

文献[6>提出了一种适于控制的自适应单神经元模型,它既可以利用神经网络的优点,又能适应于快速过程实时控制的要求。其相应的自适应神经元控制系统如图2所示。

神经网络

神经网络

四、仿真计算及分析

根据以上自适应神经元控制算法,利用Matlab615中的Simulink510工具箱,通过搭建系统模块来实现模拟仿真,所得自适应神经元控制器的Simulink仿真模型见图3。为证实其减振效果,还与被动悬架、传统的PID控制悬架进行了性能对比。

神经网络

所用的悬架模型参数名义值[10>ms=240kg,mt=36kg,ks=16kN/m,b=980N·s /m,kt=160kN/m。以C级路面的垂直速度为激励输入进行仿真。路面不平度系数Gq(n0)=256×10-6m2/m-1,车速v=20m /s,参考空间频率n0=0.1m-1,速度功率谱密度为一白噪声Gq·(f)=4π2Gq(n0)n20v。仿真中神经元控制器参数为:学习速率 d1=30,d2=63.3,d3=15.9;比例系数k=148.7;采样周期为0.01s。

仿真时,先对模型参数取名义值进行验证;然后将悬架参数的车身质量增加20%,同时轮胎刚度下降20%,考察控制器在模型参数变化时的适应能力。以上两种情况着重考察车身加速度响应,见图4及图5;根据悬架系统时域输出仿真数据,计算车身加速度、悬架动挠度、车轮动位移的均方根值及综合性能指数J,如表 1所示。

神经网络

由图4和表1可知,在名义参数情况下,两种主动悬架都能有效地降低车身加速度,改善平顺性。尽管悬架动挠度有所增大,但车辆的综合性能仍得到了改进。而且,自适应神经元控制下的车轮动位移也有一定程度的改善,其综合减振效果要明显优于PID控制。由图5和表1可见,在悬架参数变化时,两种主动悬架仍然都能减少车身加速度,有效地改善平顺性。自适应神经元控制的减振效果仍然优于PID控制。由此表明:自适应神经元控制能有效地跟随模型参数的变化,将车身加速度控制在一个较好的范围内,降低了参数不确定性对车辆平顺性能的影响;虽然神经元控制的悬架动挠度、车轮动位移相对被动悬架有所增大,但相对PID控制仍有改善,尤其是其综合性能也得到了改进。

五、结论

(1)车辆主动悬架的自适应神经元控制器的仿真结果表明:该控制器能有效地改善车辆的综合性能,尤其是车辆运行的平顺性和舒适性,而且鲁棒性好,对模型参数的变化具有一定的适应性,便于实现和应用。

(2)需要进一步研究控制器对不同路面激励的适应性,以完善主动悬架的性能。

(3)应对控制过程的实用化作深一步的研究,比如考虑作动器的非线性、时滞等因素的影响。

责任编辑:gt

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分