损耗的定义损耗与效率
为了更好地理解,我们来看一下效率的定义、以及效率与损耗之间的关系。效率是输出功率与输入功率之比。这是因为在将输入功率转换为所需的输出时会产生损耗。所以,如果用比例来表达损耗的话,可以用几个公式来表示,比如效率的倒数;功率值的话则是输入功率减去输出功率后的值等。
效率=输出功率÷输入功率 [%] 损耗=1-效率 [%] 损耗=输入功率―输出功率[W] 损耗=输出功率×(1 效率)÷效率 [W]
损耗与结温
提起为什么需要对损耗进行评估和探讨,这是因为损耗会转换为发热量。也就是说,重要的最大额定值—结点(Junction,芯片)温度,在确认是否在规定值内,是否在可使用的条件内时,发热量是重要的探讨事项。结温Tj通过以下公式来表示。
Tj [℃]=Ta [℃]+(θj-a [℃/W]×損失 [W])
在这里特意用括号将“θj-a [℃/W]×损耗 [W]”项括起来了,该项即表示“发热量”。即“环境温度Ta+发热量”为Tj。
热阻θj-a因封装和安装PCB板条件而异。通常,在各IC的技术规格书中会给出标准值。
发生部位
下面是同步整流降压转换器的威廉希尔官方网站 简图以及发生损耗的位置。关于发生位置,用红色简称来表示。
PONH是高边MOSFET导通时的导通电阻带来的传导损耗,也称为“导通损耗”。
PONL是低边MOSFET导通时的导通电阻带来的传导损耗。
PSWH是MOSFET的开关损耗。
Pdead_time是死区时间损耗。当高边和低边MOSFET同时导通时,VIN和GND处于接近短路的状态,并流过称为“直通电流”等的过电流。为了避免这种情况,几乎所有的控制器IC在高边和低边的导通/关断切换时,都会设有两者都关断的一点点时间,这就是“死区时间”。为了安全起见是需要死区时间的,但会成为损耗。
PIC是电源用IC(在这里为功率晶体管外置同步整流降压转换器用控制器IC)的电源电流。基本上是IC本身消耗的电流,是自身消耗电流。
PGATE是外置MOSFET的栅极电荷损耗。原则上MOSFET的栅极是不流过电流的,但需要用来驱动栅极电容的电荷,这会成为损耗。需要同时考虑高边和低边。
将这些损耗全部加在一起就是同步整流降压转换器的损耗。
损耗合计:
P=PONH+PONL+PSWH+Pdead_time+PIC+PGATE+PCOIL
PONH:高边MOSFET导通时的导通电阻带来的传导损耗
PONL:低边MOSFET导通时的导通电阻带来的传导损耗
PSWH:开关损耗
Pdead_time:死区时间损耗
PIC:自身功率损耗
PGATE:栅极电荷损耗
PCOIL:电感的DCR带来的传导损耗
同步整流降压转换器的传导损耗
输出端MOSFET的传导损耗
输出端MOSFET的传导损耗是高边和低边MOSFET导通时的导通电阻(RDS(ON))带来的,也称为“导通损耗”。在这里使用以下符号来表示。
PONH:高边MOSFET导通时的导通电阻带来的传导损耗。
PONL:低边MOSFET导通时的导通电阻带来的传导损耗。
导通电阻是表示MOSFET特性的重要参数之一,并且MOSFET一定存在导通电阻。因此显而易见,具有电阻的导体中会有电流流过,而这部分会产生损耗。
下面来求MOSFET的传导损耗。下面威廉希尔官方网站 图中的IONH(红色)表示高边MOSFET导通时的电流。IONL(蓝色)为低边MOSFET导通时的电流。波形图中的LX是开关节点的电压波形,IONH和IONL是伴随着开关的各电流波形,IL是电感电流,这是一个标准型示例。
在同步整流中,高边开关导通时低边开关会关断,低边导通时高边会关断。开关节点波形的红色部分表示流过IONH,蓝色部分表示流过IONL。也就是说,这期间流过MOSFET的电流和MOSFET的导通电阻带来的功率损耗成为各自的传导损耗。以下为计算公式示例。
可以看出,结果是根据欧姆定律,I2、R乘以导通期间后的值。电流模型使用了平均电流Io。
顺便提一下,在二极管整流(非同步整流)的情况下,同步整流的低边MOSFET仅成为二极管,因此可以用同样的思路来求损耗。二极管中没有“导通电阻”这个参数,因此根据正向电压Vf计算。在这里由于电压(Vf)是已知的,因此可以通过V、I来计算。另外,当开关为双极晶体管时,也可以按照和二极管相同的思路根据VCE来计算。
在实际的计算中重要的是:导通电阻的值根据Io值中的导通电阻来计算。一般情况下在MOSFET的技术规格书中会给出导通电阻RDS(ON)和IDS的曲线图,可以利用这些数据。二极管的Vf和双极晶体管的VCE也同样可以使用技术规格书中给出的数据。
同步整流降压转换器死区时间的损耗
死区时间损耗
死区时间损耗是指在死区时间中因低边开关(MOSFET)体二极管的正向电压和负载电流而产生的损耗。在这里使用Pdead_time这个符号来表示。
同步整流方式是高边开关和低边开关交替ON/OFF。理想的开关状态是两边的开关不会同时ON或同时OFF。然而在实际运行过程中这种理想状态是很难的,而且,为了安全运行还特意设置了两边开关同时OFF的期间。将这个期间称为“死区时间”。这里提到“为了安全运行”是因为如果两边的开关同时ON的话,通常会有被称为“直通电流”、“Shoot Through”、“Flow-through Current”等的电流通过高边开关和低边开关从VIN流向GND。很容易想象,这与VIN和GND短路的状态几乎相同,大电流流过,开关MOSFET可能损坏。为了避免这种情况,会在同步整流式DC/DC转换器IC中配置一种控制威廉希尔官方网站 ,使两边的开关不同时导通(ON),即两边先关断(OFF)之后相应的开关导通。
下面再回到死区时间的话题。在死区时间内,两边的开关是OFF的,所以无论从哪边开关到输出端应该都不会有电流流过。然而,实际的开关是MOSFET,MOSFET中有被称为“体二极管”的寄生二极管。下图中连接在MOSFET漏源极之间的二极管就是体二极管。
两边的开关为OFF状态时,低边MOSFET的体二极管相对于负载电流是正向的,电流通过这个体二极管流向负载。该损耗=Pdead_time可利用下列公式计算出来。
从公式中可以看出,无论哪项越小损耗都会越少。IC的死区时间控制是设置为确保安全、损耗最小的时间。
同步整流降压转换器的控制IC功率损耗
控制IC的自身功率损耗
在该例中,使用同步整流式控制IC、即未内置功率开关的控制器型IC作为电源用IC。控制电源威廉希尔官方网站 用的IC也需要电源来运行,当然也会消耗电力,而且,其功耗也会成为损耗的一部分。即上图中的PIC。
在这里,我们来探讨电源IC在纯粹的控制工作中消耗的电力。这是因为控制IC含有用来开关外置MOSFET的栅极驱动器,通常,当功率开关连续开关时,栅极驱动器的功耗占主导地位。因此,在电源始终供给相应的负载电流的应用中,控制IC自身的功耗通常不会造成什么问题。然而,在轻负载时的间歇工作和周期非常长的PFM工作中,IC自身的功耗占主导地位,对效率会产生巨大影响。所以,当需要考虑轻负载时的效率时,就需要把握IC自身功耗带来的损耗。
计算公式非常简单。这是IC最简单的功耗计算,但可能需要进行一些探讨。
为了确保与其他部分之间的整合性,这里给出了开关的波形,不过有的IC的技术规格书中给出的测量条件,可能是停止开关的条件。
另外,由于IC引脚的关系,控制威廉希尔官方网站 用的电源引脚和栅极驱动器用的电源引脚可以是分开的或复用的。GND也一样。区分自身功耗和驱动器功耗有时并不容易。不管怎样,都需要参考技术规格书中自身消耗电流相应的项目条件进行测量。
同步整流降压转换器的栅极电荷损耗
功率开关MOSFET的栅极驱动相关的损耗,即下图的高边和低边开关的“PGATE”所示部分。
栅极电荷损耗
栅极电荷损耗是由该例中外置MOSFET的Qg(栅极电荷总量)引起的损耗。当MOSFET开关时,电源IC的栅极驱动器向MOSFET的寄生电容充电(向栅极注入电荷)而产生这种损耗。这不仅是开关电源,也是将MOSFET用作功率开关的应用中共同面临的探讨事项。
损耗是MOSFET的Qg乘以驱动器电压和开关频率的值。Qg请参考所使用的MOSFET的技术规格书。驱动器电压或者实测,或者参考IC的技术规格书。
从该公式可以看出,只要Qg相同,则开关频率越高损耗越大。从提供MOSFET所需的VGS的角度看,驱动器电压不会因威廉希尔官方网站 或IC而有太大差异。MOSFET的选型和开关频率因威廉希尔官方网站 设计而异,因此,是非常重要的探讨事项。
为了确保与其他部分之间的一致性,这里给出了开关的波形,但没有表示栅极电荷损耗之处。
电感的DCR带来的传导损耗
电感的DCR(即直流电阻)是线圈的电阻。所以,只是因流过电感的电流和DCR而产生损耗。损耗发生的位置也只是电感本身。所流过的电流基本上是输出电流Io。Io可根据电感电流IL求得。
无需赘述,需要根据欧姆定律计算。
电源IC的功率损耗计算示例
此前计算了损耗发生部分的损耗,本文将介绍汇总这些损耗并作为电源IC的损耗进行计算的例子。
电源IC的功率损耗计算示例(内置MOSFET的同步整流型IC)
图中给出了从“电源IC的损耗”这个角度考虑时相关的部分。本次以输出段的MOSFET内置型IC为例进行说明。相关内容见图中蓝色所示部分。电感除外(因为电感是外置的)。如果计算此前的说明中使用的控制器型IC的损耗的话,是不包括MOSFET和电感损耗的。
要计算损耗时,需要有单独计算时公式各项相应的值。原则上使用技术规格书中给出的值。
一般情况下,技术规格书的标准值(即IC参数的值)中,包括最小值、典型值、最大值。有些参数只有最小值或最大值,或只有典型值,并非所有的参数都具备这三种值。
关于应该使用这些值的哪个值,可能会有不同的看法,但我认为应该考虑到值的变化/波动,计算最差条件下的损耗。
此次将使用上图给出的值。这些均是以最差条件为前提的值。计算步骤是先按照每种损耗的公式计算各自的损耗,然后再将损耗结果相加。
① 高边MOSFET的传导损耗
② 低边MOSFET的传导损耗
③ 高边MOSFET的开关损耗
④ 死区时间损耗
⑤ IC控制威廉希尔官方网站 的功率损耗
⑥ 栅极电荷损耗
电源IC的功率损耗总和:
在本示例中,电源IC的功率损耗约为1W。只要用于计算的数据完整,功率损耗计算并不难。
损耗的简单计算方法
在很多情况下,电源IC的技术规格书中给出的是在标准的应用威廉希尔官方网站
中测试得到的效率曲线图(效率 vs 输出电流)。如果所使用的威廉希尔官方网站
条件与规格书中的效率曲线的条件相同或近似,则在自己设计的威廉希尔官方网站
中也可能得到基本相同的效率曲线。利用这个效率曲线,可以简单计算损耗。这里也以内置MOSFET的同步整流降压转换器为例进行计算。
首先,请看根据效率计算损耗的公式,这同时也是为了整理效率和损耗的关系。
输入功率 [W]=输出功率[W]+损耗[W] 效率(×100,以“%”表示)=输出功率[W]÷输入功率[W] 损耗 [W]=输出功率[W]×(1-效率)÷效率
接下来,根据下面的条件,使用效率曲线进行计算。
使用条件:Vin=24V,Vout=5V,Iout=1.5A
从曲线图中可以看出效率为:84%(蓝色圆圈)
损耗 [W]=输出功率[W]×(1-效率)÷效率 =(5V×1.5A)×(1-0.84)÷0.84=1.43W
这里计算出的损耗是威廉希尔官方网站 的损耗(效率也一样),因此,需要减去外置输出电感的DCR带来的传导损耗(PCOIL)。
如上所述,可以根据效率曲线大致算出损耗。前面提到要减去外置电感的损耗,但更准确一点讲,估算值中包含其他外置部件和PCB的薄膜布线等的损耗。然而,由于电源IC本身的损耗比这个值小(通常只是很小的值),因此用于估算值的量并没有什么问题。
功率晶体管为外置的情况下,可以用相同的思路估算,但一般需要另行求出功率晶体管的损耗,因此所花的时间也可能与单独计算差不多。
最后,计算值的小数原则上要向上舍入,而非向下舍入。至于使用到小数点后几位数,可根据整体的功率来判断有效(有影响)的位数。这是为了将误差控制在安全范围,需要注意的是损耗和发热等负面因素。当然,在进行可否判断时需要考虑到余量而非界限值。
封装选型时的热计算示例1
从本部分开始,将介绍根据求得的损耗进行热计算,并判断在实际使用条件下是否在最大额定值范围内及其对应方法等。原本之所以求损耗(效率),是为了确认最终IC芯片和晶体管芯片的结温Tj未超出最大额定值,并确认电源威廉希尔官方网站 在要求条件下准确且安全地工作。
使用在“电源IC的功率损耗计算示例”中计算得到的结果。为方便起见,下面给出计算损耗时的条件和损耗的计算结果。
电源IC的功率损耗总和:
如右表所示,输出电流IO为2A。工作环境温度Ta为最高85℃。在这样的条件下,电源IC的封装考虑采用HTSOP-8封装。HTSOP-8是标准的表面贴装型SO封装,是背面露出金属板的封装类型。
热计算说到底是求IC芯片的结温Tj。在IC的技术规格书中,多会提供容许损耗曲线图,容许损耗最终也会归结到Tj。下面是Tj的计算公式。不难看出这个公式并非特殊的公式,而是普遍的用来表示Tj的公式。
Tj=Ta+θja×P
Ta:环境(周围)温度 ℃
θja:接合部-环境间热阻 ℃/W
P:消耗(损耗)功率 W
热阻值是计算所需的信息。多数情况下会在IC的技术规格书的条件中有提供。下表是从技术规格书中摘录的。此外,这里还提供了这些条件下的容许损耗曲线图。
从所提供的内容可以看出,热阻θja因安装PCB板的层数而异。本文中的假设前提为1层PCB,因此使用“条件①”来计算。
Tj=Ta+θja×P ⇒85℃+189.4℃/W×1.008W=275.9℃
Tjmax为150℃,因此从计算结果看严重不符合。先在公式中试着代入数值进行了计算,在列举条件过程中就可以看出其结果。在容许损耗曲线图中,一个损耗1.008W的线已经超出了①条件下的容许范围。另外,Ta=85℃的线与①的交点,表示①的条件下的容许功率,可以一目了然地看出,1.008W已经远远超过这个范围。进一步讲,当知道θja为189.4℃/W时,损耗1.008W的话仅发热量就能超过Tjmax的150℃限值,这种条件下是无法实际使用的,这在计算前就已经看出来了。
不过,通过该计算可以明白“将什么、做到怎样的程度、如何做比较好”,因此还是有必要计算的。
封装选型时的热计算示例2
"封装选型时的热计算示例1"的结果,实际上无需探讨也知道275.9℃相对于Tjmax=150℃来说是严重不合格的。
本次将基于上次的结果,在上述另一个PCB板条件②下进行计算。
PCB板②:4层PCB(2、3层铜箔,背面铜箔74.2mm×74.2mm)
条件②:θja=40.3℃/W
Tj=Ta+θja×P ⇒85℃+40.3℃/W×1.008W=125.6℃ →Tjmax=150℃以下,结果OK
在条件②下,得益于4层PCB的散热效果,热阻从189.4℃/W降至40.3℃/W,降低了近4/5,因此,即使是Ta=85℃的条件,相对于Tjmax来说也具有约24℃的余量。这也可以从上述容许损耗曲线图中来确认,图中红色虚线所示的1.008W的线和Ta=85℃线的交点,位于条件②的容许损耗曲线内侧。
这证明希望使用的封装HTSOP-8是可以使用的,但需要采用4层的PCB。
虽然这两次的示例有点极端,但通过这样的计算和经验积累,很快就会锁定所需的大致条件。但是,要想拿出具体结论,计算损耗功率并进行热计算当然是不容忽视的步骤。
损耗因素
上文介绍过在电源威廉希尔官方网站
的很多部位都会产生损耗,整体损耗的构成部分–特定部位的损耗在某些工作条件下会增加。所以需要先认识到工作条件是造成损耗增加的因素之一。下面汇总了与条件相关的造成损耗的因素,同时还给出了损耗的计算公式,这样可以更明确地理解其关联性。
随着负载电流 的增加而增加的损耗因素:
高边侧的MOSFET导通电阻 带来的传导损耗
低边侧的MOSFET导通电阻 带来的传导损耗
电感(线圈)的DCR 带来的导通损耗
随着频率 的提高而增加的损耗因素:
栅极电荷损耗
受负载电流 和频率两者影响的损耗因素:
开关损耗
Dead Time损耗
这些是和电源威廉希尔官方网站 的规格变更和条件变动有关的因素。只要理解了这些关系,就可以明白探讨规格和条件变更时的注意要点。
通过提高开关频率来实现小型化时的注意事项
在开关方式的DC/DC转换器威廉希尔官方网站 中,如果提高开关频率,就可以降低外置电感和电容器的值,也就是说,就可以使用更小形状、更小封装的电感和电容器,使威廉希尔官方网站 所需的安装面积变小,从而可实现设备的小型化。这是在小型便携设备中常用的方法。
上文中介绍过,受开关频率 fSW 影响的损耗因素主要有三项:①栅极电荷损耗、②开关损耗、③死区时间损耗。
针对这些因素,下面来计算一下当开关频率提高时,实际会增加多少损耗。条件使用“电源IC的功率损耗计算示例”中使用过的右侧条件。将开关频率从0.1MHz提高到2MHz。
<随着频率 的提高而增加的损耗因素>
①栅极电荷损耗
②开关损耗
③死区时间损耗
从计算公式可以看出,由于开关频率 fSW 从0.1MHz提高到2MHz(20倍),几种功率损耗也直接提高了20倍。然而,从整体功率损耗中每个值的比例来看,②开关损耗和③死区时间损耗占主导地位。
如果用具体的数值来表示整体损耗,那就是:开关频率0.1MHz时损耗为0.632W,开关频率1MHz时损耗为1.208W,开关频率2MHz时损耗为1.848W,很明显随着开关频率的提高,损耗也在增加。
再计算一下效率:输出功率为10W(5V/2A),输入功率为输出功率+损耗功率,因此在0.1MHz时效率为94.1%,1MHz时效率约为89.2%,2MHz时效率为84.4%,在实际上可能发生的从1MHz到2MHz的变化过程中,效率下降达4.8%。
考虑因素及对策
提高开关频率可使用更小型的外置电感和电容器,从而可进一步实现电源及应用的小型化。然而,提高开关频率后,开关损耗和死区时间损耗随之增加,效率随之下降。也就是说,提高开关频率所带来的小型化和损耗增加(效率下降)之间,存在着此起彼消的矛盾关系。
作为其对策方案是基于应用的要求,在可接受的损耗(效率)和尺寸范围进行平衡来设置开关频率。如果是尺寸为第一优先要素,则采用最快的开关频率;如果是效率为第一优先要素,则选择最慢的开关频率。不过很多情况下是综合衡量尺寸和效率,取折中方案。
高输入电压应用时的注意事项
对于DC/DC转换器的输入电源来说,通常工业设备的12V总线等几乎是恒定电压,而汽车的电池电压等虽然标称12V,但需要考虑到瞬态波动等因素,设想相当宽范围的电压进行设计。
本文将在此前提到的条件(输入电压12V,最高达60V)下来探讨效率。
在“损耗因素”一文的公式中提到,输入电压的升高能够对效率造成影响的是“开关损耗”。
<随着输入电压 VIN的升高而增加的损耗因素>
开关损耗:
从公式可以看出,开关损耗随VIN的升高而增加,由于是乘法算式,因此将会造成很大的影响。
下面来实际计算一下当VIN为12V和60V时的损耗。
PSWH(12VIN)=0.5×12V×2A×(20 nsec+20 nsec)×1MHz=0.48W
PSWH(60VIN)=0.5×60V×2A×(20 nsec+20 nsec)×1MHz=2.4W
VIN升高了5倍,所以计算后开关损耗也增加了5倍。
考虑因素及对策
要将输入电压范围扩展为12V~60V,需要对当初选择用于12VIN的MOSFET重新评估包括额定电压(耐压)在内的几项规格。以下汇总了重新评估要点和注意事项。
在使用开关晶体管(MOSFET)外置的控制器IC的案例中,重新评估MOSFET的额定电压(VD)。
开关损耗会增加,因此MOSFET的容许损耗也需要重新评估。
随着MOSFET的变更,探讨采用tr和tf更快且导通电阻和Qg低的产品。
电源规格中,如果能够降低开关频率就将其降低。如果将fSW减半(降至500kHz),则损耗也会减半。
如果是开关晶体管内置型的IC,则需要对IC本身进行评估。
至此仅考虑了损耗方面的因素,其实在涉及更高输入电压时,还有一项考虑因素。虽然并非本文的主题内容,但在现实中是非常重要的,因此在这里提一下。
应该是将最大60VIN降压至5VOUT,但降压比受电源IC的控制参数之一的最小导通时间的限制,故必须对降压比和最小导通时间进行探讨。由于降压比是60:5,按开关频率1MHz进行简单计算的话,需要能够控制周期1µs的1/12、即83.3ns的导通时间的电源IC。然而,现实中最小导通时间83.3ns以下的电源IC并不多。在ROHM的产品中,DB9V100MUFF这款电源IC可以满足该条件,但在多数情况下,很多产品因无法满足最小导通时间要求而被迫降低开关频率。如果降低开关频率,则不仅需要重新确认损耗,其他相关的所有元器件常数等都需要重新确认。但在车载设备中,基本上都要求2MHz以上的开关频率,因此无法通过降低开关频率来解决该问题。
综上所述,在探讨高电压应用时,需要考虑到降压比和损耗增加这两方面的因素。
高输入电流应用时的注意事项1
在此前使用的条件中,设想输出电流的范围为1A~5A。
随着输出电流增加而增加的损耗有低边/高边MOSFET的导通电阻损耗、开关损耗、死区时间损耗以及电感的DCR损耗。
下面是“损耗因素”中列出的各损耗公式。
<随着输出电流 的增加而增加的损耗因素>
・高边侧的MOSFET导通电阻 带来的传导损耗
・低边侧的MOSFET导通电阻 带来的传导损耗
・开关损耗
・死区时间损耗
・电感(线圈)的DCR 带来的导通损耗
从公式中可以看出,MOSFET的导通电阻和电感的DCR损耗尤为增加。由于Io为二次方,因此1A时为1,但5A时变为25,与其他损耗相比,其系数变为5倍。
考虑因素及对策
MOSFET的导通电阻带来的传导损耗是损耗增加的主要因素,因此在开关MOSFET外置的控制器IC配置的情况下,应选择导通电阻低的MOSFET。如果是MOSFET内置型IC,则基于同样的观点,应选择内置MOSFET的导通电阻小的IC,但由于没有单独选择MOSFET的选项,因此需要对比整体的损耗进行选择。
电感的DCR损耗也很大,因此需要选择DCR小的电感。在IC组成的电源威廉希尔官方网站 中,一般情况下电感为外置,因此与MOSFET外置型和内置型的思路相同。
关于开关损耗,选择tRISE和tFALL较快、即MOSFET的开关速度快的产品可抑制开关损耗。基本上需要选择Qg低的MOSFET。另外,控制器IC的栅极驱动能力高也可有效抑制损耗,但本次使用IC本身的条件。有的MOSFET内置型IC是以高速开关为特点的。
此次的条件设置中,是以不改变开关频率为前提的,不过也有通过降低开关频率来降低损耗的手法。但是,这与电感的大小之间存在矛盾平衡关系。
死区时间损耗是死区时间中因低边MOSFET的体二极管的正向电压VF和Io而产生的损耗,因此理论上应该使用缩短死区时间、体二极管的VF小的MOSFET。然而,在大多数情况下,死区时间是按控制器IC优化的值设置的,是无法调整的,而且根据死区时间来选择控制IC的做法也不太现实。此外,对于MOSFET也是一样,寻找体二极管的VF小的产品也并不现实。如果无法容忍死区时间损耗,可以通过在低边MOSFET的漏极-源极间增加VF小的二极管(如肖特基二极管)来降低VF。另外,虽然这种方法与本次的条件不符,但还可以通过降低开关频率的方法来处理。
最终需要使用导通电阻低的MOSFET,提高开关速度,并选用DCR低的电感。但是,关于MOSFET的选型还有一些需要探讨的事项,相关内容将在“其2”中进行说明。
高输入电流应用时的注意事项2
如上文中所介绍的,要想提高输出电流,需要使用导通电阻小的MOSFET。然而,高耐压且低导通电阻的MOSFET通常会具有较大的栅极电容,并且往往具有较高的Qg,因此,需要注意栅极电荷损耗。
下面将在此前使用的条件下,在栅极电荷Qg具有从1nC到50nC的范围条件下,来探讨损耗。
・栅极电荷损耗
当Qg增加时,栅极电荷损耗也会随之增加。
对策
作为应对这种损耗增加问题的对策,可探讨使用输出电流增加时所需的低导通电阻的MOSFET,且Qg低的MOSFET。实际上存在导通电阻低且Qg足够低的MOSFET,这是可以避免的问题。
需要注意的是,Qg低的MOSFET可能会具有急剧的开关上升/下降,这可能会导致开关噪声变大。虽然这种对策具有提高开关速度、降低开关损耗的优点,但需要充分评估EMI问题,也需要考虑PCB设计。
小结:在探讨输出电流大的应用时,需要使用导通电阻低的MOSFET,提高开关速度,并选择DCR低的电感。关于MOSFET,需要选择导通电阻低、Qg低的产品。在这种情况下,开关速度往往会提高,因此需要确认开关噪声是否有增加。
原文标题:收藏! 超实用万字解析: 电源损耗的评估与计算
文章出处:【微信公众号:嵌入式ARM】欢迎添加关注!文章转载请注明出处。
责任编辑:haq
-
电源
+关注
关注
184文章
17766浏览量
250703 -
电阻
+关注
关注
86文章
5525浏览量
172261 -
电流
+关注
关注
40文章
6891浏览量
132344
原文标题:收藏! 超实用万字解析: 电源损耗的评估与计算
文章出处:【微信号:gh_c472c2199c88,微信公众号:嵌入式微处理器】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论