0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

揭秘0.1uF容量的旁路电容的由来

GReq_mcu168 来源:电子制作站 作者:Jackie Long 2021-06-29 09:15 次阅读

有一定经验的工程师都会发现:旁路电容的容值大多数为0.1uF(100nF),这也是数字威廉希尔官方网站 中最常见的。

那这个值是怎么来的呢?这一节我们就来讨论一下这个问题。

前面已经提到过,实际的电容器都有自谐振频率,考虑到这个因素,作为数字威廉希尔官方网站 旁路电容的容量一般不超过 1uF,当然,容量太小也不行,因为储存的电荷无法满足开关切换时瞬间要求的电荷,那旁路电容的容量到底应该至少需要多大呢?我们用最简单的反相器逻辑芯片(74HC04)实例计算一下就知道了。

实际芯片的每个逻辑门基本结构如下图所示(以下均来自Philips 74HC04数据手册)

d4294f04-d875-11eb-9e57-12bb97331649.jpg

而每个CMOS反相器的基本结构(具体参考文章【逻辑门(1)】)

每个逻辑非门(Gate)由三个反相器串联组成(芯片为什么会这样设计可参考文章“逻辑门”):

CI表示芯片信号引脚的输入电容(Input capacitance),CL表示输出负载电容(Output Load capacitance)。对于每一级反相器,后一级反相器的输入电容CI即作为前一级开关的输出负载电容,当然,反相器开关本身也会有一定的输出寄生电容。

它们也包含在CL内,一个逻辑非门(包含三个反相器)的所有等效负载电容就是内部逻辑阵列开关在切换时需要向电源VDD索取能量的来源(换言之,开关切换时需要对这个等效负载电容进行充放电操作),这个逻辑阵列开关等效电容在数据手册中通常用CPD(power dissipation capacitance per gate)表示

注意:在这个数据手册中,CPD是一个逻辑非门(Per Gate)的开关等效电容。

在74HC04芯片中,CPD就相当于是CL1、CL2、CL3的等效电容(不一定是简单的相加),而CL4取决于芯片外接负载。

有人问:这个公式怎么来的?权威么?我书读得少,不要骗我!数据手册中有呀。

公式分成了两个部分,但结构是一模一样的,前面一部分与我们给出的公式是相同的,表示芯片内部逻辑阵列开关等效负载电容CPD的功耗,而后一部分与芯片外接负载CL有关(也称之为等效IO开关电容),输出引脚IO连接有多少个负载,就将相应负载电容CL的功耗全部计算起来。

有人问:输入电容CI就不计算进去吗?乖乖,对于芯片输出引脚连接的负载而言,负载的输入电容CI就是引脚的等效负载电容CL呀,输出负载连接(并联)越多,则等效负载电容CL就越大,消耗的功率也就越大,如下图所示:

d50acc40-d875-11eb-9e57-12bb97331649.jpg

一般而言,CL(CI)值是总是相对容易找到的,数据手册中通常都会有,因为输出连接什么负载你肯定是知道的,但CPD却不一定在数据手册能查得到,因此,我们在计算芯片的功耗时可能会分为芯片内与芯片外两个部分。

最基础的数据计算方法我们已经知道了,有两种方法可以估算旁路电容的最小容量:

第一种计算方法思路:逻辑阵列开关等效电容(CPD)需要获取足够的电荷能量,那芯片的旁路电容的容量必定不能比芯片总CPD更小,通常旁路电容的容量比芯片总CPD大25~100倍,我们称其为旁路电容倍乘系数(bypass capacitor multiplier,这里取个中间数50)。

由于74HC04包含六个逻辑非门,从数据手册上也可以查到CPD约为21pF,因此,芯片总CPD应为21pF×6=126pF,再考虑到50倍的旁路电容系数,旁路电容的容量必须要大于126pF×50=6.3nF。

以上计算的是芯片输出未连接负载的情况,假设反相器后面并接了10个逻辑非门(CMOS门威廉希尔官方网站 的扇出系数一般为20~25),则此时等效威廉希尔官方网站 如下图所示:

d52d3bc2-d875-11eb-9e57-12bb97331649.jpg

对于门1 来说,此时芯片的输出负载电容CL=10×CI=10×7pF=70pF,对于整个系统而言,这个CL也可以算是门1的逻辑阵列开关等效电容,因为从图上可以看出,它消耗的是门1的电源能量(而不是门2~门11),这样根据上述同样的算法,门1外接旁路电容的容量至少应为(21pF+70pF)×50=4.55nF。

当然,这只是一个逻辑非门的计算结果,如果芯片中其它5个非门也是同样的负载连接,则需要的旁路电容容量至少应为4.55nF×6=27.3nF,在考虑到威廉希尔官方网站 设计裕量情况下,我们可以直接选择100nF的旁路电容。

那功耗PD计算的意义在哪里?前面我们是走了狗屎运,芯片够简单,所以数据手册里提供了CPD的具体值,但更多的应用场合下是没有办法直接获取这个值的,我们看看更大规模集成芯片的情况。

大规模逻辑芯片的旁路电容容量的计算原理也是大体一致的,逻辑阵列开关每秒钟转换的次数至少会以百方来计算(MHz),我们以ALTERA公司FPGA CYCLONE IV芯片来计算一下外接负载时负载电容(不包括内部逻辑开关阵列等效电容CPD,为什么?下面会提到)所消耗的功率。

假设IO供电电源电压VCCIO为3.3V,时钟频率为100MHz,负载数量为30个(也就是输出外接了负载的IO引脚),输出引脚的平均负载电容为10pF,则旁路电容的容量至少应为:10pF×30×50=15000pF=15nF。

对于FPGA之类的大规模集成芯片,内核电压VCCINT或IO电压VCCIO都会有多个,如果计算某一个电源引脚所需的旁路电容的容量,还需要除以这些电源引脚的个数。

不同封装芯片的VCCIO数量是不一样的,F256/U256(BGA)封装有20个,而E144(QFP)封装只有12个,但是FPGA的VCCIO是按BANK来供电的(就是VCCIO后面带的那个数字,数字相同表示BANK相同,不了解FPGA的读者不必深究),不应该直接除了这个总数。

如果这30个连接的负载分布在2个BANK,对于E144封装每个BANK约有2个VCCIO电源,仅需要除以数量4就行了,因此,单个电源引脚所需要的旁路电容容量应至少约为3.75nF。

我们可以用灭火的水龙头来理解:当芯片只有一个电源引脚时,相当于灭火的水龙头只有一个,而芯片有多个电源引脚时,相当于灭火的水龙头有多个,在火灾危害程度相同的情况下,需要灭火的用水量是一定的,因此,对于有多个水龙头的情形而言,单个水龙头需要的用水量需求就少了,当然,总的用水量肯定是一样的,亦即总的旁路电容值是不会变化的。

上面只是计算芯片外接负载时需要的旁路电容容量,那如何计算内部逻辑阵列等效电容呢?没办法直接去计算,除非知道具体的CPD的值(前面我们是走运),但是这个值通常是不提供的,因为这个值会随实际威廉希尔官方网站 逻辑规模的大小与功能而有很大的不同,那就没有办法了吗?NO!

我们可以用测量仪器实际测量出FPGA芯片在具体逻辑功能应用时所消耗的动态功率PD,或使用配套的功耗分析软件进行功耗的计算,总而言之,芯片逻辑阵开关等效电容的功耗PD的值总是可以获取出来的,再根据之前的功耗计算公式反推出CPD。

27.8nF已经不小了,再乘上50倍旁路电容的倍数,则旁路电容的总容量至少应为27.8nF×50=1390nF=1.39uF,因此,动态功耗越大的芯片需要在旁边放置更多的旁路电容就是这个道理。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1629

    文章

    21736

    浏览量

    603306
  • 芯片
    +关注

    关注

    455

    文章

    50812

    浏览量

    423565
  • 电容
    +关注

    关注

    100

    文章

    6045

    浏览量

    150323
  • 反相器
    +关注

    关注

    6

    文章

    311

    浏览量

    43315

原文标题:资深硬件工程师也未必知道:0.1uF容量的旁路电容原来是这么来的

文章出处:【微信号:mcu168,微信公众号:硬件攻城狮】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    CBB电容的误差范围 CBB电容的电气特性

    关于CBB电容的误差范围及其电气特性,以下进行介绍: CBB电容的误差范围 CBB电容的容值通常以微法(uF)为单位,例如0.1uF、1
    的头像 发表于 12-18 09:27 229次阅读

    DAC8563 Vout接0.1uF到地的电容时,输出有约270mV,117khz频率的正弦纹波,怎么解决?

    设置输出Vout=0.6V时,实际Vout是约0.6V,但有一个纹波PK-PK270mV,频率固定117khz的正弦波。将Vout端接的到地0.1uF电容去掉或改为1nF,该纹波显示,请问这是由于相移产生的震荡吗?求解??谢谢~~
    发表于 11-26 08:17

    0.1uF的安规电容能否用0.33uF的安规电容代替

    安规电容在电子设备中扮演着重要角色,在威廉希尔官方网站 中起到‌保护人身安危‌,‌增强电磁兼容性‌,‌提高产品可靠性‌,‌减轻瞬态电压和干扰的影响等作用。
    的头像 发表于 11-22 18:00 280次阅读
    <b class='flag-5'>0.1uF</b>的安规<b class='flag-5'>电容</b>能否用0.33<b class='flag-5'>uF</b>的安规<b class='flag-5'>电容</b>代替

    0.1uF的安规电容能否用0.33uF的安规电容代替

    安规电容在电子设备中扮演着重要角色,在威廉希尔官方网站 中起到‌保护人身安危‌,‌增强电磁兼容性‌,‌提高产品可靠性‌,‌减轻瞬态电压和干扰的影响等作用。
    的头像 发表于 11-22 16:59 220次阅读
    <b class='flag-5'>0.1uF</b>的安规<b class='flag-5'>电容</b>能否用0.33<b class='flag-5'>uF</b>的安规<b class='flag-5'>电容</b>代替

    用OPA847搭建的小信号放大威廉希尔官方网站 图,同相输入端接入0.1uf和100pf这两个电容,输出信号自激震荡怎么解决?

    用OPA847搭建的小信号放大威廉希尔官方网站 图,基本按照芯片手册搭建的。但是现在碰到两个问题:1、同相输入端接入0.1uf和100pf这两个电容,输出信号自激震荡,不接放大威廉希尔官方网站 可以正常工作,为什么?重点问题2、输出不稳定,用示波器测输出电压,电压放大倍数不稳定,有什么好的办法可以
    发表于 08-30 06:27

    旁路电容和耦合电容怎么判断好坏

    旁路电容和耦合电容是电子威廉希尔官方网站 中非常重要的元件,它们在威廉希尔官方网站 中扮演着至关重要的角色。但是,如何判断它们的性能好坏呢? 一、旁路电容的作用和原理
    的头像 发表于 08-09 15:40 720次阅读

    旁路电容和耦合电容怎么判断

    旁路电容和耦合电容是电子威廉希尔官方网站 中常见的两种电容元件,它们在威廉希尔官方网站 中起着不同的作用。 一、旁路电容
    的头像 发表于 08-07 10:14 1608次阅读

    威廉希尔官方网站 中贴片电容需满足哪些要求?

    [贴片电容]威廉希尔官方网站 中贴片电容需满足哪些要求?贴片电容必要满足两个要求,一个是容量需求,另一个是ESR需求。也就是说一个0.1uF
    的头像 发表于 07-10 13:58 311次阅读
    威廉希尔官方网站
中贴片<b class='flag-5'>电容</b>需满足哪些要求?

    电源上并联电容大小为何常呈现100倍关系?

    电源上并联10uF0.1uF,正好是100倍关系。那么,为什么不用1uF0.1uF呢?
    发表于 03-27 14:23 960次阅读
    电源上并联<b class='flag-5'>电容</b>大小为何常呈现100倍关系?

    旁路电容和去耦电容作用和区别介绍

    旁路电容和去耦电容作用和区别 一、旁路电容的作用 旁路电容
    的头像 发表于 03-01 15:48 3499次阅读

    为什么要在每个芯片电源管脚加0.1uF电容呢?

    我们在进行威廉希尔官方网站 设计时,会在每个芯片电源管脚加0.1uF电容,说是为了滤波,提高系统稳定性。
    的头像 发表于 02-28 11:01 2561次阅读
    为什么要在每个芯片电源管脚加<b class='flag-5'>0.1uF</b>的<b class='flag-5'>电容</b>呢?

    旁路电容和滤波电容,去耦电容分别怎么用?

    旁路电容和滤波电容,去耦电容分别怎么用? 旁路电容、滤波电容
    的头像 发表于 02-03 17:42 1735次阅读

    资深详解:旁路电容0.1uF是这样来的

    事实上,旁路电容的这两个基本功能在某种意义上来讲是完全统一的:你可以认为旁路电容的储能为高频开关切换(充电)提供瞬间电荷,从而避免开关产生的高频噪声向距离芯片更远的方向扩散,因为开关切
    的头像 发表于 01-14 14:28 1735次阅读
    资深详解:<b class='flag-5'>旁路</b><b class='flag-5'>电容</b><b class='flag-5'>0.1uF</b>是这样来的

    电源滤波威廉希尔官方网站 上的电容参数是如何确定的?

    的输入级常常用较大容量的钽电容来滤波。而在靠近芯片的地方放一些10uF0.1uF电容来去耦,陶瓷电容
    发表于 01-09 08:25

    LTM4644在4路都为轻负载输出情况下,每路COMP接0.1uf电容到地,为什么经常会出现芯片啸叫?

    如题。我在用一个4644输出4路电源,每路电源电流常温电流需求均小于1A,在每次上电启动时,经常会出现4644啸叫,电压不能正常输出,或者电压输出,但是波形不稳,一直在震荡的情况,去掉这个0.1uf电容后就可以正常输出。期间修改4644为持续电流输出和轻负载模式均没法解决
    发表于 01-05 11:26