0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

NVIDIA GPU助力单颗粒冷冻电镜研究

NVIDIA英伟达企业解决方案 来源:NVIDIA英伟达企业解决方案 作者:NVIDIA英伟达企业解 2022-05-20 15:13 次阅读

清华大学杨茂君实验室是国内领先的结构生物学实验室,杨茂君教授目前为清华大学 Tenue-Track 系列教授,研究方向为生物大分子的结构生物学基础,主要以冷冻电镜为研究手段探究生物大分子的结构与功能。NVIDIA DGX Station A100 助力清华大学生命学院杨茂君教授实验室,缩短了冷冻电镜数据的处理时间,效率提升了约 50 倍。

GPU 替代传统计算方式

解决庞大计算问题

目前单颗粒的冷冻电镜的数据收集产生的数据量很大,以往的经验是使用 CPU 服务器以及多核多线程的方法进行计算,但在实际计算过程中,无 GPU 的普通服务器计算时间比较长,严重阻碍了后续的实验进展。以一套使用 Titan Krios 收集的 2000 张照片的数据量为例,使用 box 为 200 埃进行颗粒的抽取,后续假定可以抽取 200 万左右的颗粒,使用普通的无 GPU 服务器的普通工作站进行处理数据。以 RELION 软件为例,普通的二维和三维每一轮次可能需要一天,处理完所有的数据的二维和三维操作,得到最终的结果至少需要一个月的时间。

GPU 加速的三维重构计算,打破了上述的僵局。目前使用 GPU 的并行计算能力对于冷冻电镜的大规模处理,可以迅速的对图像进行优化和提升后续的处理时间。依托 NVIDIA DGX Station A100,使用 MotiionCorr2 和 GCTF 软件对图像进行处理,极大的缩短了后续的处理时间。同时使用 RELION 软件进行二维和三维分类的时候, GPU 加速大大提高了数据的处理时间。目前 200 万左右的颗粒进行二维分类,每一轮次可以缩短到 20-40 分钟左右,半天的时间就可以跑完一次理想的二维分类。样品质量好的话,借助于 GPU 加速, 2000 张照片的整体处理时间可以缩短到 4-7 天左右,给后续的冷冻电镜的数据处理带来了质的变化。

GPU 加速计

超强助力单颗粒冷冻电镜研究

借助于 NVIDIA DGX Station A100,该实验室极大地提升了单颗粒冷冻电镜的数据处理时间,优化了数据处理流程,为推动相关科研成果提供了良好的计算平台支持。

“在使用 NVIDIA DGX Station A100 过程中, GPU 的并行计算能力能够很好的对图像进行预处理,打破了冷冻计算过程中的时间过长的壁垒,大大减少了投入成本。能够快速的在一周左右的时间内完成从收数据到解析结构的过程,使科研工作者能够更快的投入到后续的结构分析过程中,特别是在冷冻电镜以及结构生物学高速发展的今天,使用高性能的 NVIDIA GPU 服务器,能够更好的抢占先机,缩短相应的科研攻关时间,为国内基础科研的快速发展提供了更好的平台。”清华大学生命学院杨茂君教授表示。

本案例中, NVIDIA 优选级合作伙伴北京安联通助力清华大学杨茂君实验室部署了高效 AI 计算处理平台,同时把原有的网络传输设备改换成全新的 NVIDIA 网络产品,大大提高了实验室设备的传输速度。点击“阅读原文”,详细了解服务器级 AI 系统 NVIDIA DGX Station A100。

原文标题:NVIDIA DGX Station A100 加速单颗粒冷冻电镜图像处理

文章出处:【微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • NVIDIA
    +关注

    关注

    14

    文章

    5013

    浏览量

    103243
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4752

    浏览量

    129054
  • 计算
    +关注

    关注

    2

    文章

    450

    浏览量

    38833

原文标题:NVIDIA DGX Station A100 加速单颗粒冷冻电镜图像处理

文章出处:【微信号:NVIDIA-Enterprise,微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    NVIDIA助力FinCatch开发智能投资辅助系统

    本案例中通过 NVIDIA GPU 和 RAPIDS 加速平台,FinCatch 实现了投资研究流程的全面智能化,提升数据分析速度和准确性,帮助投资者快速获取可操作的投资洞察。
    的头像 发表于 01-07 09:23 163次阅读

    NVIDIA和GeForce RTX GPU专为AI时代打造

    NVIDIA 和 GeForce RTX GPU 专为 AI 时代打造。
    的头像 发表于 01-06 10:45 107次阅读

    借助NVIDIA GPU提升鲁班系统CAE软件计算效率

    本案例中鲁班系统高性能 CAE 软件利用 NVIDIA 高性能 GPU,实现复杂产品的快速仿真,加速产品开发和设计迭代,缩短开发周期,提升产品竞争力。
    的头像 发表于 12-27 16:24 152次阅读

    《CST Studio Suite 2024 GPU加速计算指南》

    的各个方面,包括硬件支持、操作系统支持、许可证、GPU计算的启用、NVIDIA和AMD GPU的详细信息以及相关的使用指南和故障排除等内容。 1. 硬件支持 - NVIDIA
    发表于 12-16 14:25

    场发射扫描电镜(FESEM)与常规扫描电镜(SEM):技术对比及优势分析

    场发射扫描电镜与SEM的比较及优势在微观世界的研究中,扫描电镜(SEM)一直是科学家们探索材料表面和内部结构的重要工具。随着技术的进步,场发射扫描电镜(FESEM)以其卓越的性能,成为
    的头像 发表于 11-21 14:36 392次阅读
    场发射扫描<b class='flag-5'>电镜</b>(FESEM)与常规扫描<b class='flag-5'>电镜</b>(SEM):技术对比及优势分析

    AMD与NVIDIA GPU优缺点

    在图形处理单元(GPU)市场,AMD和NVIDIA是两大主要的竞争者,它们各自推出的产品在性能、功耗、价格等方面都有着不同的特点和优势。 一、性能 GPU的性能是用户最关心的指标之一。在高端市场
    的头像 发表于 10-27 11:15 796次阅读

    暴涨预警!NVIDIA GPU供应大跳水

    gpu
    jf_02331860
    发布于 :2024年07月26日 09:41:42

    NVIDIA全面转向开源GPU内核模块

    借助 R515 驱动程序,NVIDIA 于 2022 年 5 月发布了一套开源的 Linux GPU 内核模块,该模块采用双许可证,即 GPL 和 MIT 许可。初始版本主要面向数据中心计算 GPU,而 GeForce 和工作站
    的头像 发表于 07-25 09:56 456次阅读
    <b class='flag-5'>NVIDIA</b>全面转向开源<b class='flag-5'>GPU</b>内核模块

    助力科学发展,NVIDIA AI加速HPC研究

    科学家和研究人员正在利用 NVIDIA 技术将生成式 AI 应用于代码生成、天气预报、遗传学和材料科学领域的 HPC 工作。
    的头像 发表于 05-14 09:17 426次阅读
    <b class='flag-5'>助力</b>科学发展,<b class='flag-5'>NVIDIA</b> AI加速HPC<b class='flag-5'>研究</b>

    NVIDIA推出两款基于NVIDIA Ampere架构的全新台式机GPU

    两款 NVIDIA Ampere 架构 GPU 为工作站带来实时光线追踪功能和生成式 AI 工具支持。
    的头像 发表于 04-26 11:25 638次阅读

    利用NVIDIA组件提升GPU推理的吞吐

    本实践中,唯品会 AI 平台与 NVIDIA 团队合作,结合 NVIDIA TensorRT 和 NVIDIA Merlin HierarchicalKV(HKV)将推理的稠密网络和热 Embedding 全置于
    的头像 发表于 04-20 09:39 756次阅读

    NVIDIA的Maxwell GPU架构功耗不可思议

    整整10年前的2013年2月19日,NVIDIA正式推出了新一代Maxwell GPU架构,它有着极高的能效,出场方式也非常特别。
    的头像 发表于 02-19 16:39 1045次阅读
    <b class='flag-5'>NVIDIA</b>的Maxwell <b class='flag-5'>GPU</b>架构功耗不可思议

    巨头豪购35万块NVIDIA最强GPU H100

    NVIDIA AI GPU无疑是当下的硬通货,从科技巨头到小型企业都在抢。
    的头像 发表于 01-29 09:58 1121次阅读
    巨头豪购35万块<b class='flag-5'>NVIDIA</b>最强<b class='flag-5'>GPU</b> H100

    NVIDIA RTX GPU助力打造城市新区绿化

    世界各地的设计公司如今正在持续探索如何将先进技术引入工作流程,以提升品质和效率。跨国设计公司 SWA 已深耕景观建筑、规划、城市设计领域 65 年,其独立办公室 SWA 上海借助 NVIDIA
    的头像 发表于 01-18 10:14 462次阅读
    <b class='flag-5'>NVIDIA</b> RTX <b class='flag-5'>GPU</b><b class='flag-5'>助力</b>打造城市新区绿化

    如何选择NVIDIA GPU和虚拟化软件的组合方案呢?

    NVIDIA vGPU 解决方案能够将 NVIDIA GPU 的强大功能带入虚拟桌面、应用程序和工作站,加速图形和计算,使在家办公或在任何地方工作的创意和技术专业人员能够访问虚拟化工作空间。
    的头像 发表于 01-12 09:26 1160次阅读
    如何选择<b class='flag-5'>NVIDIA</b> <b class='flag-5'>GPU</b>和虚拟化软件的组合方案呢?