当然可以,最小化热回路PCB ESR和ESL是优化效率的重要方法。
对于功率转换器 ,寄生参数 最小的热回路PCB布局能够改善能效比,降低电压振铃,并减少电磁干扰(EMI)。本文讨论如何通过最小化PCB的等效串联电阻 (ESR)和等效串联电感(ESL)来优化热回路布局设计。本文研究并比较了影响因素,包括解耦电容 位置、功率FET尺寸和位置以及过孔布置。通过实验验证了分析结果,并总结了最小化PCB ESR和ESL的有效方法。
开关模式功率转换器的热回路是指由高频(HF)电容和相邻功率FET形成的临界高频交流电流 回路。它是功率级PCB布局的最关键部分,因为它包含高dv/dt和di/dt噪声成分。设计不佳的热回路布局会产生较大的PCB寄生参数,包括ESL、ESR和等效并联电容(EPC),这些参数对功率转换器的效率、开关性能和EMI性能有重大影响。
图1显示了同步降压DC -DC转换器原理图。热回路由MOSFET M1和M2以及解耦电容CIN形成。M1和M2的开关动作会产生高频di/dt和dv/dt噪声。CIN提供了一个低阻抗路径来旁路高频噪声成分。然而,器件封装内和热回路PCB走线上存在寄生阻抗(ESR、ESL)。高di/dt噪声通过ESL会引起高频振铃,进而导致EMI。ESL中存储的能量在ESR上耗散,导致额外的功率损耗。因此,应尽量减小热回路PCB的ESR和ESL,以减少高频振铃并提高效率。 准确提取热回路的ESR和ESL,有助于预测开关性能并改进热回路设计。器件的封装和PCB走线均会影响回路的总寄生参数。本文主要关注PCB布局设计。有一些工具可帮助用户提取PCB寄生参数,例如Ansys Q3D、FastHenry/FastCap、StarRC等。Ansys Q3D之类的商用工具可提供准确的仿真 ,但通常价格昂贵。FastHenry/FastCap是一款基于部分元件等效威廉希尔官方网站
(PEEC)数值建模的免费工具,可以通过编程 提供灵活的仿真来探索不同的版图设计,但需要额外的编程。FastHenry/FastCap寄生参数提取的有效性和准确性已经过验证,并与Ansys Q3D进行了比较,结果一致。在本文中,FastHenry用作提取PCB ESR和ESL的经济高效的工具。
图1.带热回路ESR和ESL的降压转换器
本部分基于ADI 公司 的LTM4638µModule稳压器演示板DC2665A-B来研究CIN 位置的影响。LTM4638是一款集成式20 VIN 、15 A降压型转换器模块,采用小型6.25 mm × 6.25 mm × 5.02 mm BGA封装。它具有高功率密度、快速瞬态响应和高效率特性。模块内部集成了一个小的高频陶瓷CIN ,不过受限于模块封装尺寸,这还不够。图2至图4展示了演示板上的三种不同热回路,这些热回路使用了额外的外部CIN 。第一种是垂直热回路1(图2),其中CIN1 放置在μModule稳压器下方的底层。µModule VIN 和GND BGA引脚通过过孔直接连接到CIN1 。这些连接提供了演示板上的最短热回路路径。第二种热回路是垂直热回路2(图3),其中CIN2 仍放置在底层,但移至μModule稳压器的侧面区域。其结果是,与垂直热回路1相比,该热回路添加了额外的PCB走线,预计ESL和ESR更大。第三种热回路选项是水平热回路(图4),其中CIN3 放置在靠近μModule稳压器的顶层。µModule VIN 和GND引脚通过顶层铜连接到CIN3 ,而不经过过孔。然而,顶层的VIN 铜宽度受其他引脚排列的限制,导致回路阻抗高于垂直热回路1。表1比较了FastHenry提取的热回路 PCB ESR和ESL。正如预期的那样,垂直热回路1的PCB ESR和ESL最低。
图2.垂直热回路1:(a)俯视图和(b)侧视图
图3.垂直热回路2:(a)俯视图和(b)侧视图
图4.水平热回路:(a)俯视图和(b)侧视图
表1.使用FastHenry提取的不同热回路的PCB ESR和ESL
为了通过实验验证不同热回路的ESR和ESL,我们测试了12V转1V CCM运行时演示板的效率和VIN 交流纹波。理论上,ESR越低,则效率越高,而ESL越小,则VSW振铃频率越高,VIN 纹波幅度越低。图5a显示了实测效率。垂直热回路1的效率最高,因为其ESR最低。水平热回路和垂直热回路1之间的损耗差异也是基于提取的ESR计算的,这与图5b所示的测试结果一致。图5c中的VIN HF纹波波形是在CIN 上测试的。水平热回路具有更高的VIN 纹波幅度和更低的振铃频率,因此验证了其回路ESL高于垂直热回路1。另外,由于回路ESR更高,因此水平热回路的VIN 纹波衰减速度快于垂直热回路1。此外,较低的VIN 纹波降低了EMI,因而可以使用较小的EMI滤波器 。
图5.演示板测试结果:(a)效率,(b)水平回路与垂直回路1之间的损耗差异,(c)15A输出时M1导通期间的VIN 纹波
表2.对于不同器件形状和位置,使用FastHenry提取的热回路PCB ESR和ESL
热回路PCB ESR和ESL与MOSFET尺寸和位置的关系 对于分立式设计,功率FET的布置和封装尺寸对热回路ESR和ESL也有重大影响。本部分对使用功率FET M1和M2以及解耦电容C IN 的典型半桥热回路进行了建模和研究。图6比较了常见功率FET封装尺寸和放置位置。表2显示了每种情况下提取的ESR和ESL。 情况(a)至(c)展示了三种常见功率FET布置,其中采用5 mm × 6 mm MOSFET。热回路的物理长度决定了寄生阻抗。与情况(a)相比,情况(b)中的90°形状布置和情况(c)中的180°形状布置的回路路径更短,导致ESR降低60%,ESL降低80%。由于90°形状布置显示出了优势,我们基于情况(b)研究了更多情况,以进一步降低回路ESR和ESL。情况(d)将一个5 mm × 6 mm MOSFET替换为两个并联的3.3mm × 3.3mm MOSFET。由于MOSFET尺寸更小,回路长度进一步缩短,导致回路阻抗降低7%。情况(e)将一个接地层放置在热回路层下方,与情况(d)相比,热回路ESR和ESL进一步降低2%。原因是接地层上产生了涡流,其感应出相反的磁场,相当于降低了回路阻抗。情况(f)构建了另一个热回路层作为底层。如果将两个并联MOSFET对称布置在顶层和底层,并通过过孔连接,则由于并联阻抗,热回路PCB ESR和ESL的降低更加明显。因此,在顶层和底层上以对称90°形状或180°形状布置较小尺寸的器件,可以获得最低的PCB ESR和ESL。
为了通过实验验证MOSFET布置的影响,我们使用了AD I公司的高效率4开关同步降压-升压控制器演示板LT8390/DC2825A和LT8392/DC2626A。如图 7a和图7b所示,DC2825A采用直线MOSFET布置,DC2626A采用90°形状的MOSFET布置。为了进行公平比较,两个演示板配置了相同的MOSFET和解耦电容,并在36V转12V/10A、300 kHz降压操作下进行了测试。图7c显示了M1导通时刻测得的VIN 交流纹波。采用90°形状的MOSFET布置时,VIN 纹波的幅度更低,谐振频率更高,这就验证了热回路路径较短导致PCB ESL更小。相反,直线MOSFET布置的热回路更长,ESL更高,导致VIN 纹波幅度要高得多,并且谐振频率更低。根据Cho和Szokusha研究的EMI测试结果,较高的输入电压纹波还会导致EMI辐射更严重。
图6.热回路PCB模型:(a)5mm×6mm MOSFET,直线布置;(b)5mm×6mm MOSFET,以90°形状布置;(c)5mm×6mm MOSFET,以180°形状布置;(d)两个并联的3.3mm×3.3mm MOSFET,以90°形状布置;(e)两个并联的3.3mm×3.3mm MOSFET,以90°形状布置,带有接地层;(f)对称的3.3mm×3.3mm MOSFET,位于顶层和底层,以90°形状布置。
图7.(a) LT8390/DC2825A热回路,MOSFET以直线布置;(b) LT8392/DC2626A热回路,MOSFET以90°形状布置;(c) M1导通时的VIN 纹波波形。
图8.热回路PCB模型,(a) 5个GND过孔靠近CIN和M2布置;(b) 14个GND过孔布置在CIN和M2之间;(c) 基于(b),GND上再布置6个过孔;(d) 基于(c),GND区域上再布置9个过孔。
热回路中的过孔布局对回路ESR和ESL也有重要影响。图8对使用两层PCB结构和直线布置功率FET的热回路进行了建模。FET放置在顶层,第二层是接地层。CIN GND焊盘和M2源极焊盘之间的寄生阻抗Z2是热回路的一部分,作为示例进行研究。Z2是从FastHenry提取的。表3总结并比较了不同过孔布置的仿真ESR2 和ESL2 。
通常,添加更多过孔会降低PCB寄生阻抗。然而,ESR2和ESL2的降低程度与过孔数量并不是线性比例关系。靠近引脚焊盘的过孔,所导致的PCB ESR和ESL的降低最明显。因此,对于热回路布局设计,必须将几个关键过孔布置在靠近CIN和MOSFET焊盘的位置,以使高频回路阻抗最小。 表3.使用不同过孔布置时提取的热回路PCB ESR2 和ESL2
减小热回路的寄生参数有助于提高电源效率,降低电压振铃,并减少EMI。为了尽量减小PCB寄生参数,我们研究并比较了使用不同解耦电容位置、MOSFET尺寸和位置以及过孔布置的热回路布局设计。更短的热回路路径、更小尺寸的MOSFET、对称的90°形状和180°形状MOSFET布置、靠近关键元器件 的过孔,均有助于实现最低的热回路PCB ESR和ESL。
原文标题:如何通过最小化热回路来优化开关电源布局?
文章出处:【微信公众号:亚德诺半导体 】欢迎添加关注!文章转载请注明出处。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
原文标题:如何通过最小化热回路来优化开关电源布局?
文章出处:【微信号:analog_devices,微信公众号:analog_devices】欢迎添加关注!文章转载请注明出处。
相关推荐
开关电源 效率。高品质的变压器能够有效地减少铁损耗和铜损耗,不仅能提高功率转换效率,还能有效延长开关电源 的使用寿命。 优化开关 元件的选择 : 开关 元件对于
发表于 11-29 16:56
• 387 次阅读
对于功率转换器,寄生参数最小 的热 回路 PCB布局 能够改善能效比,降低电压振铃,并减少电磁干扰(EMI)。本文讨论如何通过
发表于 11-25 10:36
• 658 次阅读
、基本控制技术 手动控制 通过 手动操作开关 或旋钮来 控制开关电源 的开关 状态和输出电压等参数。 这种方式简单易懂,但缺乏自动
发表于 10-18 18:03
• 432 次阅读
电子发烧友网站提供《AN_1149开关电源 布局 指南.pdf》资料免费下载
发表于 08-26 14:36
• 2 次下载
电子发烧友网站提供《最小化 启动期间的输出纹波.pdf》资料免费下载
发表于 08-26 11:44
• 0 次下载
、一个电容C和一个变压器T组成。电感L和电容C以及变压器是串联连接的,通过 半桥开关 频率的变化来 调整输出电压。 工作原理 :LLC开关电源 利用谐振原理进行工作,
发表于 08-08 09:51
• 1572 次阅读
了广泛应用。然而,要确保反激式开关电源 的稳定运行和高效性能,反馈回路 的设计与分析至关重要。 一、反激式开关电源 概述 1.1 工作原理 反激式开关电源
发表于 07-29 10:24
• 1559 次阅读
问:开关电源 板布局 的黄金法则优化 威廉希尔官方网站
板布局 是开关电源 设计中的一个关键。良好的布局 可确保
发表于 07-01 17:11
我想实现一个按钮然后窗口最小化 ,为什么一运行就直接最小化 了呢
发表于 04-16 10:56
电子发烧友网站提供《用于最小化 个人计算机开关电源 的外部组件系统TPS3510 TPS3511数据表.pdf》资料免费下载
发表于 03-13 14:29
• 1 次下载
开关电源 因其高效率和小型化 设计而在现代电子设备中广泛应用。然而,随之而来的噪声问题却可能影响电源 性能,并对其他威廉希尔官方网站
造成干扰。以下是针对开关电源 噪声的一些对策:
发表于 02-05 09:51
• 2298 次阅读
开关电源 共模电流模型可以用下面三个回路 来 简单说明。在开关 管共模电压的驱动下,形成输入回路 、输出回路
发表于 01-21 09:47
• 1242 次阅读
开关电源 是一种重要的电力转换装置,广泛应用于电子设备、通信设备、电源 管理系统等领域。为了确保开关电源 的设计、性能和可靠性,仿真软件成为开发、测试和优化开关电源 的重要工具。本文将为您推荐
发表于 01-04 11:20
• 8213 次阅读
系统的可靠性和稳定性。本文将从以下几个方面介绍如何提高开关电源 的EMC性能。 一、优化开关电源 的设计 选择合适的拓扑结构:开关电源 的拓扑结构对EMC性能有很大影响。一般来说,反激式、正激式和LLC等拓扑结构具有较高的EMC性能。
发表于 12-30 16:35
• 1324 次阅读
开关电源 在工作过程中会产生电磁干扰(EMI),这种干扰信号会对周围的电子设备产生不良影响。为了减小电磁干扰,开关电源 的布局 与布线设计至关重要。本文将对开关电源 电磁兼容设计中的
发表于 12-30 15:25
• 753 次阅读
评论