近年来,柔性电子器件在人体健康检测、分析以及可穿戴设备等生物医学工程领域展现出了广泛的应用前景。然而,在柔性电子器件的组装中,用于连接不同模块的商用导电胶容易变形、断裂,使得接口不稳定性成为该领域内长期存在的难题,严重阻碍了整个器件的拉伸性和信号质量。
基于此,中国科学院深圳先进技术研究院、新加坡南洋理工大学及美国斯坦福大学的华人科学家们另辟蹊径,他们绕开了用“商业胶水”组装柔性电子器件的思路,开发了一种基于双连续纳米分散网络的BIND界面(biphasic, nano-dispersed interface, BIND),这种新型界面能够作为柔性电子器件通常所包含的柔性模块、刚性模块以及封装模块的通用接口,只需要按压10秒钟,就可以实现“乐高式”的高效稳定组装。相关成果于近日发表在国际顶级期刊Nature上。深圳先进院研究员刘志远南洋理工大学教授陈晓东、斯坦福大学教授鲍哲南为论文共同通讯作者,南洋理工大学博士姜颖为第一作者。
人机接口是人与电子设备之间进行的数字虚拟世界和现实物理世界的信息交换,而柔性电子器件则是人机接口技术的关键核心和先导基础。近年来,柔性电子器件在生物医学工程领域的研究十分火热,它大致可以分为植入式和体表式两种,主要功能就是采集应力信号、温度信号、生理电信号、超声信号、生物化学信号等生理数据,以监测人体健康状态。不过,商用导电胶的瓶颈却破坏了柔性电子器件的整体稳定性,无论单个模块的拉伸性多好,只要模块接口处的拉伸性很弱,那么整个器件的拉伸性就会受到制约。
可拉伸混合设备的BIND连接
联合团队发现,在特定的制备条件下,基于SEBS嵌段聚合物和黄金纳米颗粒的柔性界面,即BIND界面,面对面贴合时有“魔术贴”式的电气与机械双重黏合特性,能够将不同功能的柔性传感器稳定地黏合在一起,从而实现柔性模块与柔性模块之间的高效连接。通过热蒸发金(Au)或银(Ag)纳米颗粒制备BIND界面,在自粘苯乙烯-乙烯-丁烯-苯乙烯(SEBS)热塑性弹性体内部形成互穿纳米结构,SEBS是一种广泛应用于可拉伸电子产品的软基板。SEBS基质表面附近的纳米颗粒形成了一个双相层(大约90纳米深),其中一些纳米颗粒完全浸入其中,而另一些纳米颗粒部分暴露在外。这种界面结构在表面产生了暴露的SEBS和Au,在基体内部产生了互穿的Au纳米颗粒,这为坚固的BIND连接提供了连续的机械和电气途径。总之,这种即插即用的接口可以简化和加速皮肤上和可植入的可拉伸设备的开发。实验表明,采用新型接口的柔性医疗器件能高精度、高保真、抗干扰地监测体内外不同器官,包括表皮、脑皮层、坐骨神经、腓骨肌肉、膀胱等,比起商用导电胶组装的系统信号质量大幅度提升。
研究团队所开发的“魔术贴”式柔性组装方法与在肌电监测中的应用实例
据介绍,采用BIND界面的柔性模块接口,其导电拉伸率可达180%,机械拉伸率可达600%,远高于采用商用导电胶连接的普通接口(分别为45%、60%);对于硬质模块接口,其导电拉伸率达到200%,并能适用于聚酰亚胺(PI)、玻璃、金属等多种硬质材料;对于封装模块接口,BIND界面能提供0.24 N/mm的粘附力,是传统柔性封装的60倍。
这项研究为智能柔性电子器件的模块化组装提供了可拉伸、稳定高效的通用接口,不仅简化了柔性医疗器件的使用,也加速了多模态、多功能的柔性医疗器件的研发。通过该接口组装的智能柔性传感器件可用于多个医疗领域,如植入式人机接口、体表健康监测、智能柔性传感、软体机器人等。
该成果是在深圳先进院神经工程中心研究员李光林主持的国家基金委重大科研仪器研制项目、刘志远主持的国家重点研发计划及神经工程研究中心的大力支持下,与南洋理工大学、斯坦福大学通力合作完成的,并得到了中科院人机智能协同系统重点实验室和中科院健康信息学重点实验室及平台的支持。
审核编辑 :李倩
-
模块
+关注
关注
7文章
2707浏览量
47474 -
人机接口
+关注
关注
0文章
50浏览量
17314 -
柔性电子
+关注
关注
4文章
180浏览量
15982
原文标题:【Nature】柔性电子器件重要进展
文章出处:【微信号:WW_CGQJS,微信公众号:传感器技术】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论