0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习中的图像分割

新机器视觉 来源:新机器视觉 2023-05-05 11:35 次阅读

深度学习中的图像分割

深度学习可以学习视觉输入的模式,以预测组成图像的对象类。用于图像处理的主要深度学习架构是卷积神经网络(CNN),或者是特定的CNN框架,如AlexNet、VGG、Inception和ResNet。计算机视觉的深度学习模型通常在专门的图形处理单元(GPU)上训练和执行,以减少计算时间。

图像分割

图像分割是计算机视觉中的一个关键过程。它包括将视觉输入分割成片段以简化图像分析。片段表示目标或目标的一部分,并由像素集或“超像素”组成。图像分割将像素组织成更大的部分,消除了将单个像素作为观察单位的需要。

图像分析有三个层次

分类:将整幅图片分成若干类别

目标检测:检测图像中的目标并在其周围画一个矩形

分割:识别图像的部分,并理解它们属于什么对象。分割是进行目标检测和分类的基础

语义分割 实例分割

在分割时,依据分割结果,有两个粒度级别

语义分割:将图像中的所有像素划分为有意义的对象类。这些类是“语义上可解释的”,并对应于现实世界的类别。例如,你可以将与猫相关的所有像素分离出来,并将它们涂成绿色。这也被称为dense预测,因为它预测了每个像素的含义。

实例分割- 标识图像中每个对象的每个实例。它与语义分割的不同之处在于它不是对每个像素进行分类。

传统的图像分割方法

还有一些过去常用的图像分割技术,但效率不如深度学习技术,因为它们使用严格的算法,需要人工干预和专业知识。这些包括

阈值:将图像分割为前景和背景。指定的阈值将像素分为两个级别之一,以隔离对象。阈值化将灰度图像转换为二值图像或将彩色图像的较亮和较暗像素进行区分。

K-means聚类:算法识别数据中的组,变量K表示组的数量。该算法根据特征相似性将每个数据点(或像素)分配到其中一组。聚类不是分析预定义的组,而是迭代地工作,从而有机地形成组。

基于直方图的图像分割:使用直方图根据“灰度”对像素进行分组。简单的图像由一个对象和一个背景组成。背景通常是一个灰度级,是较大的实体。因此,一个较大的峰值代表了直方图中的背景灰度。一个较小的峰值代表这个物体,这是另一个灰色级别。

边缘检测:识别亮度的急剧变化或不连续的地方。边缘检测通常包括将不连续点排列成曲线线段或边缘。例如,一块红色和一块蓝色之间的边界。

深度学习如何助力图像分割方法

现代图像分割技术以深度学习技术为动力。

下面是几种用于分割的深度学习架构

使用CNN进行图像分割,是将图像的patch作为输入输入给卷积神经网络,卷积神经网络对像素进行标记。CNN不能一次处理整个图像。它扫描图像,每次看一个由几个像素组成的小“滤镜”,直到它映射出整个图像。

传统的cnn网络具有全连接的层,不能处理不同的输入大小。FCNs使用卷积层来处理不同大小的输入,可以工作得更快。最终的输出层具有较大的感受野,对应于图像的高度和宽度,而通道的数量对应于类的数量。卷积层对每个像素进行分类,以确定图像的上下文,包括目标的位置。

集成学习:将两个或两个以上相关分析模型的结果合成为单个。集成学习可以提高预测精度,减少泛化误差。这样就可以对图像进行精确的分类和分割。通过集成学习尝试生成一组弱的基础学习器,对图像的部分进行分类,并组合它们的输出,而不是试图创建一个单一的最优学习者。

DeepLab:使用DeepLab的一个主要动机是在帮助控制信号抽取的同时执行图像分割 —— 减少样本的数量和网络必须处理的数据量。另一个动机是启用多尺度上下文特征学习 —— 从不同尺度的图像中聚合特征。DeepLab使用ImageNet预训练的ResNet进行特征提取。DeepLab使用空洞卷积而不是规则的卷积。每个卷积的不同扩张率使ResNet块能够捕获多尺度的上下文信息

DeepLab由三个部分组成

Atrous convolutions— 使用一个因子,可以扩展或收缩卷积滤波器的视场。

ResNet— 微软的深度卷积网络(DCNN)。它提供了一个框架,可以在保持性能的同时训练数千个层。ResNet强大的表征能力促进了计算机视觉应用的发展,如物体检测和人脸识别。

Atrous spatial pyramid pooling (ASPP)— 提供多尺度信息。它使用一组具有不同扩展率的复杂函数来捕获大范围的上下文。ASPP还使用全局平均池(GAP)来合并图像级特征并添加全局上下文信息。

SegNet neural network:一种基于深度编码器和解码器的架构,也称为语义像素分割。它包括对输入图像进行低维编码,然后在解码器中利用方向不变性能力恢复图像。然后在解码器端生成一个分割图像。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4771

    浏览量

    100741
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4734

    浏览量

    128913
  • 计算机
    +关注

    关注

    19

    文章

    7490

    浏览量

    87896
  • 图像分割
    +关注

    关注

    4

    文章

    182

    浏览量

    17998
  • 深度学习
    +关注

    关注

    73

    文章

    5503

    浏览量

    121125

原文标题:深度学习中的图像分割

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    主动脉夹层分割深度学习模型是如何炼成的?

    利用深度学习进行主动脉真假腔分割有赖于大量手动标注的主动脉图像来训练深度学习网络,计算量大,且对
    的头像 发表于 07-17 09:14 6084次阅读

    深度学习在医学图像分割与病变识别的应用实战

    等方面具有重要意义。本文将介绍这一领域的背景、挑战,以及通过一个代码实例展示如何利用深度学习方法进行医学图像分割与病变识别。 背景与挑战医学图像
    发表于 09-04 11:11

    图像分割图像边缘检测

     图像分割的研究多年来一直受到人们的高度重视,至今提出了各种类型的分割算法。Pal把图像分割算法分成了6类:阈值
    发表于 12-19 09:29 1.1w次阅读
    <b class='flag-5'>图像</b><b class='flag-5'>分割</b>和<b class='flag-5'>图像</b>边缘检测

    深度学习图像分割的方法和应用

    介绍使图像分割的方法,包括传统方法和深度学习方法,以及应用场景。 基于人工智能和深度学习方法的现
    的头像 发表于 11-27 10:29 3175次阅读

    详解深度学习图像分割

    基于人工智能和深度学习方法的现代计算机视觉技术在过去10年里取得了显著进展。如今,它被用于图像分类、人脸识别、图像物体的识别、视频分析和分
    的头像 发表于 01-06 15:50 3687次阅读

    图像分割的方法,包括传统方法和深度学习方法

    许多计算机视觉任务需要对图像进行智能分割,以理解图像的内容,并使每个部分的分析更加容易。今天的图像分割
    的头像 发表于 01-08 14:44 9313次阅读

    分析总结基于深度神经网络的图像语义分割方法

    随着深度学习技术的快速发展及其在语义分割领域的广泛应用,语义分割效果得到显著提升。对基于深度神经网络的
    发表于 03-19 14:14 21次下载
    分析总结基于<b class='flag-5'>深度</b>神经网络的<b class='flag-5'>图像</b>语义<b class='flag-5'>分割</b>方法

    深度学习在视频对象分割的应用及相关研究

    视频对象分割是指在给定的一段视频序列的各帧图像,找岀属于特定前景对象的所有像素点位置区域。随着硬件平台计算能力的提升,深度学习受到了越来越
    发表于 03-24 15:47 9次下载
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>在视频对象<b class='flag-5'>分割</b><b class='flag-5'>中</b>的应用及相关研究

    基于深度神经网络的图像语义分割方法

    图像语义分割是计算机视觉领堿近年来的热点硏究课题,随着深度学习技术的兴起,图像语义分割
    发表于 04-02 13:59 11次下载
    基于<b class='flag-5'>深度</b>神经网络的<b class='flag-5'>图像</b>语义<b class='flag-5'>分割</b>方法

    浅谈关于深度学习方法的图像分割

    许多计算机视觉任务需要对图像进行智能分割,以理解图像的内容,并使每个部分的分析更加容易。今天的图像分割
    的头像 发表于 07-06 10:50 2201次阅读

    基于深度学习的场景分割算法研究

    场景分割的目标是判断场景图像每个像素的类别.场景分割是计算机视觉领域重要的基本问题之一,对场景图像的分析和理解具有重要意义,同时在自动驾驶
    发表于 02-12 11:28 579次阅读

    基于深度学习的点云分割的方法介绍

      摘 要:点云分割是点云数据理解的一个关键技术,但传统算法无法进行实时语义分割。近年来深度学习被应用在点云
    发表于 07-20 15:23 3次下载

    深度学习图像语义分割指标介绍

    深度学习图像语义分割上已经取得了重大进展与明显的效果,产生了很多专注于图像语义分割的模型与基准
    发表于 10-09 15:26 394次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>图像</b>语义<b class='flag-5'>分割</b>指标介绍

    机器人视觉技术图像分割方法有哪些

    和分析。本文将详细介绍图像分割的各种方法,包括传统的图像处理方法和基于深度学习的方法。 阈值分割
    的头像 发表于 07-04 11:34 952次阅读

    图像分割与语义分割的CNN模型综述

    图像分割与语义分割是计算机视觉领域的重要任务,旨在将图像划分为多个具有特定语义含义的区域或对象。卷积神经网络(CNN)作为深度
    的头像 发表于 07-09 11:51 857次阅读