磁传感器
磁传感器是种类繁多的传感器中的一种,它能够感知与磁现象有关的物理量的变化,并将其转变为电信号进行检测,从而直接或间接地探测磁场大小、方向、位移、角度、电流等物理信息,广泛应用于信息、电机、电力电子、能源管理、汽车、磁信息读写、工业自动控制及生物医学等领域。
随着科技进步和信息技术的发展,人们对磁传感器的尺寸、灵敏度、热稳定性及功耗等提出了越来越高的要求。
广泛应用的磁传感器主要是基于电磁感应原理、霍尔效应及磁电阻效应等。其中基于磁电阻效应的传感器由于其高灵敏度、小体积、低功耗及易
集成等特点正在取代传统的磁传感器。
目前市场上主要的磁传感器芯片是基于霍尔效应、各向异性磁电阻(AMR)和巨磁电阻(GMR)效应而开发的,而由于TMR磁传感器芯片拥有的小型化、低成本、低功耗、高度集成、高响应频率和高灵敏度特性,使其将会成为未来竞争的制高点。
TMR隧道磁阻传感器
主流的磁传感器仍然是半导体霍尔器件,但其本身存在的灵敏度低、容易受应力和温度影响、响应频率低以及功耗大的缺点,使其主导地位正不断受到磁电阻传感器的冲击。
国外薄膜磁电阻传感器(AMR/Sl,in-Valve/TMR)技术已经成熟并已开始大规模量产。TMR传感器目前主要应用在硬盘磁头和磁性内存领域,代表厂商:Seagate/WD/TDK;AMR器件代表厂商有:HoneyWell/NEC/日本旭化成/西门子;美国NVE公司小规模量产GMR传感器和少量的Spin—Valve传感器。
TMR磁传感器芯片的研发和生产依赖于纳米薄膜及纳米级电子元器件的生产设备、生产工艺与技术以及芯片的设计等多个环节。TMR技术主要掌握在国外的硬盘制造企业手中,而磁传感器制造企业普遍缺乏n很芯片制各技术、人才和生产经验。
在全世界范围内,国际上也只有美国的两家公司能够小批量生产TIvIR磁传感器芯片,包括美国的NVE和Micro Magnetics,而国内受设备和人才的限制,直到2010年,才逐渐填补这一领域的空白。
TMR传感器的原理和特性
基于磁电阻效应磁信号可以转变为电信号,除了庞磁电阻(CMR)效应受到温度区间和工作磁场的限制而很难应用以外,其他AMR、GMR、TMR三种磁电阻效应都可以应用于磁传感器中。
目前,AMR传感器已经大规模应用;GMR传感器正方兴未艾,快速发展。TMR传感技术最早应用于硬盘驱动器读出磁头,大大提高了硬盘驱动器的记录密度。它集AMR的高灵敏度和GMR的宽动态范围优点于一体,因而在各类磁传感器技术中,TMR磁传感器具有无可比拟的技术优势,其各项性能指标均远优于其他类型的传感器,表1给出了三种效应的传感器技术比较。
TMR效应的产生机理和特点
在铁磁材料中, 由于量子力学交换作用, 铁磁金属的 3d轨道局域电子能带发生劈裂, 使费米 ( Ferm i)面附近自旋向上和向下的电子具有不同的能态密度。
在磁性隧道结 MTJs中, TMR 效应的产生机理是自旋相关的隧穿效应。MTJs的一般结构为铁磁层 /非磁绝缘层 /铁磁层 ( FM / I/FM )的三明治结构.。饱和磁化时,两铁磁层的磁化方向互相平行, 而通常两铁磁层的矫顽力不同, 因此反向磁化时, 矫顽力小的铁磁层磁化矢量首先翻转, 使得两铁磁层的磁化方向变成反平行。电子从一个磁性层隧穿到另一个磁性层的隧穿几率与两磁性层的磁化方向有关。
TMR效应的产生机理示意图
若两层磁化方向互相平行, 则在一个磁性层中, 多数自旋子带的电子将进入另一磁性层中多数自旋子带的空态, 少数自旋子带的电子也将进入另一磁性层中少数自旋子带的空态, 总的隧穿电流较大; 若两磁性层的磁化方向反平行, 情况则刚好相反, 即在一个磁性层中, 多数自旋子带的电子将进入另一磁性层中少数自旋子带的空态, 而少数自旋子带的电子也将进入另一磁性层中多数自旋子带的空态, 这种状态的隧穿电流比较小。 因此, 隧穿电导随着两铁磁层磁化方向的改变而变化, 磁化矢量平行时的电导高于反平行时的电导。通过施加外磁场可以改变两铁磁层的磁化方向, 从而使得隧穿电阻发生变化, 导致TMR效应的出现。
MTJs中两铁磁层电极的自旋极化率定义为
式中 和 N 分别为铁磁金属费米面处自旋向上和自旋向下电子的态密度。
由 Julliere模型可以得到
或者
式中
分别为两铁磁层磁化方向平行和反平行时的隧穿电阻,
分别为两铁磁层电极的自旋极化率。显然, 如果
均不为零, 则 MTJs中存在 TMR 效应,且两铁磁层电极的自旋极化率越大,TMR 值也越高。
在研究中,不同的学者对 TMR值的定义不同, 有的学者采用 ( 2) 式的定义, 但最近几年, 大部分学者都采用 ( 3)式的定义。
TMR磁传感器产品应用
TMR磁传感器产品应用TMR磁传感器的应用非常广泛,包括工业控制、金融器具、生物医疗、消费电子、汽车领域等,其典型特征是低功耗、小尺寸、高灵敏度。薛松生博士给我们举了几个案例。
在流量计领域中,智能水表、智能热量表一般都采用电池供电,因此对传感器的功耗要求非常苛刻。当前水表方案采用干簧管、低功耗霍尔器件以及韦根传感器等,要么频率响应非常低导致测量精度不够,要么就是功耗很大导致电池寿命很短。而采用韦根传感器的智能热量表威廉希尔官方网站
复杂,可靠性差,小流量的测量也不精确。另外,采用霍尔器件的传统电表方案温度性能比较差,由于灵敏度低需要额外增加聚磁环,导致体积和成本增加。目前,采用两个TMR超低功耗磁传感器的方案,根据叶轮转动的磁场变化测量转速,得到水表的瞬时流量,并且功耗非常低(超低功耗全极磁开关MMS2X1H,双极磁开关MMS1X1H,全时供电下只有1.5uA电流,频响大于1KHZ)。在智能电表中,基于TMR磁传感器(如TMR501、TMR503)的电表比传统霍尔器件电表体积更小、成本更低、精度更高、温度特性更好。
智能水表
智能气表
在金融器具领域,国内的金融设备主要采用电感线圈和锑化铟磁头,无论是检测精度和信噪比,还是磁头的尺寸,均无法与其他发达国家尤其是日本的金融磁头相比,更加严重的是产品一致性存在问题,量产工艺不稳定,无法大批量生产。时至今日,全球(包括中国)高端金融磁头市场都被日本公司垄断。TMR磁性识别传感器(如MMGB015、MMGB065、MMGB18S)是专门用于纸币、银行票据、证券磁特性的检测、识别的新型纯阻抗验钞磁头,主要应用于点验钞机、清分设备、ATM、各类自动售货机读钞、验钞模组和磁卡读头,具有高灵敏度、高信噪比、高频响等特点。
(左)单通道TMR金融磁头 (右上)6通道TMR金融磁头 (右下)18通道TMR金融磁头
在电梯、矿洞、桥梁等钢丝绳无损探伤方面,基于TMR磁传感器的产品(如TMR2703、TMR2705、TMR2901、TMR2903)能够利用弱磁检测精确定位绳索的表面缺陷和内部缺陷,与目前几万、几十万的检测系统相比精度更高、价格更加亲民、检测更加方便。
在智能停车管理系统领域,与传统的地感线圈、超声波、RFID、红外线等判断停车位上有无车辆相比,TMR线性磁传感器能够根据车辆对地磁的扰动特征识别出来,精度高、体积小、易于安装维护、全天候工作。
在医疗领域,例如血槽中磁珠外表的生物膜跟血液中不同的病毒结合的实验,通过血液中的磁珠体积变化从而判断病人的病情,而TMR磁传感器能够精准的监测出磁珠体积是否变大。
基于TMR磁传感器的产品在智慧家庭和智能汽车领域将会拓展更多的应用。
由于 TMR材料同时具备工作磁场低、灵敏度高、热稳定性好等特性,因此,与 GMR 效应相比,TMR效应具有更为广阔的应用前景。研究与开发室温 TMR 值高、热稳定性好、 RA 值低、成本低的 TMR材料将是今后磁电阻材料领域工作的重点和关键。
全部0条评论
快来发表一下你的评论吧 !